{"title":"Neighbor Product Distinguishing Total Coloring via Combinatorial Nullstellensatz","authors":"Meng-ying Shi, Li Zhang","doi":"10.1007/s10255-024-1025-7","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>G</i> = (<i>V, E</i>) be a simple graph and ϕ: <i>V</i>(<i>G</i>) ⋃ <i>E</i>(<i>G</i>) → {1, 2, ⋯, <i>k</i>} be a proper total-<i>k</i>-coloring of <i>G</i>. Let <i>f</i>(<i>v</i>) = <i>ϕ</i>(<i>v</i>)Π<sub>uv∈<i>E</i>(G)</sub><i>ϕ</i>(<i>uv</i>). The coloring <i>ϕ</i> is neighbor product distinguishing if <i>f</i>(<i>u</i>) ≠ <i>f</i>(<i>v</i>) for each edge <i>uv</i> ∈ <i>E</i>(<i>G</i>). The neighbor product distinguishing total chromatic number of <i>G</i>, denoted by <i>χ</i><span>\n <sup>″</sup><sub>Π</sub>\n \n </span>(<i>G</i>), is the smallest integer <i>k</i> such that <i>G</i> admits a <i>k</i>-neighbor product distinguishing total coloring. Li et al. conjectured that <i>χ</i><span>\n <sup>″</sup><sub>Π</sub>\n \n </span>(<i>G</i>) ≤ Δ(<i>G</i>) + 3 for any graph with at least two vertices and confirmed the conjecture for <i>K</i><sub>4</sub>-minor free graph. In this paper, we prove that for a graph <i>G</i> with at least two vertices, (1) if mad <span>\\((G)<{60 \\over 17}\\)</span>, then <i>χ</i><span>\n <sup>″</sup><sub>Π</sub>\n \n </span>(<i>G</i>) ≤ max{Δ + 2, 8}; (2) if mad <span>\\((G)<{8 \\over 3}\\)</span>, then <i>χ</i><span>\n <sup>″</sup><sub>Π</sub>\n \n </span>(<i>G</i>) ≤ max{Δ + 2, 6}. Furthermore, by using the Combinatorial Nullstellensatz, we simplify their proof and show that <i>χ</i><span>\n <sup>″</sup><sub>Π</sub>\n \n </span>(<i>G</i>) ≤ max{Δ(<i>G</i>) + 2, 6} for any <i>K</i><sub>4</sub>-minor free graph.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"41 4","pages":"1167 - 1179"},"PeriodicalIF":0.9000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1025-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Let G = (V, E) be a simple graph and ϕ: V(G) ⋃ E(G) → {1, 2, ⋯, k} be a proper total-k-coloring of G. Let f(v) = ϕ(v)Πuv∈E(G)ϕ(uv). The coloring ϕ is neighbor product distinguishing if f(u) ≠ f(v) for each edge uv ∈ E(G). The neighbor product distinguishing total chromatic number of G, denoted by χ″Π(G), is the smallest integer k such that G admits a k-neighbor product distinguishing total coloring. Li et al. conjectured that χ″Π(G) ≤ Δ(G) + 3 for any graph with at least two vertices and confirmed the conjecture for K4-minor free graph. In this paper, we prove that for a graph G with at least two vertices, (1) if mad \((G)<{60 \over 17}\), then χ″Π(G) ≤ max{Δ + 2, 8}; (2) if mad \((G)<{8 \over 3}\), then χ″Π(G) ≤ max{Δ + 2, 6}. Furthermore, by using the Combinatorial Nullstellensatz, we simplify their proof and show that χ″Π(G) ≤ max{Δ(G) + 2, 6} for any K4-minor free graph.
期刊介绍:
Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.