Robust Variable Selection for the Varying Coefficient Partially Nonlinear Models

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Yun-lu Jiang, Hang Zou, Guo-liang Tian, Tao Li, Yu Fei
{"title":"Robust Variable Selection for the Varying Coefficient Partially Nonlinear Models","authors":"Yun-lu Jiang,&nbsp;Hang Zou,&nbsp;Guo-liang Tian,&nbsp;Tao Li,&nbsp;Yu Fei","doi":"10.1007/s10255-025-0046-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we develop a robust variable selection procedure based on the exponential squared loss (ESL) function for the varying coefficient partially nonlinear model. Under certain conditions, some asymptotic properties of the proposed penalized ESL estimator are established. Meanwhile, the proposed procedure can automatically eliminate the irrelevant covariates, and simultaneously estimate the nonzero regression coefficients. Furthermore, we apply the local quadratic approximation (LQA) and minorization–maximization (MM) algorithm to calculate the estimates of non-parametric and parametric parts, and introduce a data-driven method to select the tuning parameters. Simulation studies illustrate that the proposed method is more robust than the classical least squares technique when there are outliers in the dataset. Finally, we apply the proposed procedure to analyze the Boston housing price data. The results reveal that the proposed method has a better prediction ability.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"41 4","pages":"950 - 972"},"PeriodicalIF":0.9000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-025-0046-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we develop a robust variable selection procedure based on the exponential squared loss (ESL) function for the varying coefficient partially nonlinear model. Under certain conditions, some asymptotic properties of the proposed penalized ESL estimator are established. Meanwhile, the proposed procedure can automatically eliminate the irrelevant covariates, and simultaneously estimate the nonzero regression coefficients. Furthermore, we apply the local quadratic approximation (LQA) and minorization–maximization (MM) algorithm to calculate the estimates of non-parametric and parametric parts, and introduce a data-driven method to select the tuning parameters. Simulation studies illustrate that the proposed method is more robust than the classical least squares technique when there are outliers in the dataset. Finally, we apply the proposed procedure to analyze the Boston housing price data. The results reveal that the proposed method has a better prediction ability.

变系数部分非线性模型的鲁棒变量选择
本文针对变系数部分非线性模型,提出了一种基于指数平方损失(ESL)函数的鲁棒变量选择方法。在一定条件下,给出了所提出的惩罚ESL估计量的渐近性质。同时,该方法可以自动剔除不相关的协变量,同时估计非零回归系数。在此基础上,应用局部二次逼近(LQA)和最小化最大化(MM)算法计算了非参数和参数部分的估计,并引入了数据驱动的方法来选择调谐参数。仿真研究表明,当数据集中存在异常值时,该方法比经典的最小二乘方法具有更强的鲁棒性。最后,运用本文提出的方法对波士顿房价数据进行了分析。结果表明,该方法具有较好的预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信