Exponential-Poisson Parameters Estimation in Moving Extremes Ranked Set Sampling Design

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Meng Chen, Wang-xue Chen, Rui Yang, Ya-wen Zhou
{"title":"Exponential-Poisson Parameters Estimation in Moving Extremes Ranked Set Sampling Design","authors":"Meng Chen,&nbsp;Wang-xue Chen,&nbsp;Rui Yang,&nbsp;Ya-wen Zhou","doi":"10.1007/s10255-023-1076-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, the maximum likelihood estimators (MLEs) of the scale and shape parameters <i>β</i> and <i>λ</i> from the Exponential-Poisson distribution will be considered in moving extremes ranked set sampling (MERSS). These MLEs will be compared in terms of asymptotic efficiencies. The numerical results show that the MLEs obtained via MERSS can serve as effective alternatives to those derived from simple random sampling.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"41 4","pages":"973 - 984"},"PeriodicalIF":0.9000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-023-1076-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, the maximum likelihood estimators (MLEs) of the scale and shape parameters β and λ from the Exponential-Poisson distribution will be considered in moving extremes ranked set sampling (MERSS). These MLEs will be compared in terms of asymptotic efficiencies. The numerical results show that the MLEs obtained via MERSS can serve as effective alternatives to those derived from simple random sampling.

移动极值排序集抽样设计中的指数泊松参数估计
在本文中,从指数泊松分布的尺度和形状参数β和λ的最大似然估计(MLEs)将考虑在移动极值排序集抽样(MERSS)。我们将从渐近效率的角度来比较这些mle。数值计算结果表明,该方法可以有效地替代简单随机抽样方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信