A Potential Degree Sequence Problem of the Loebl-Komlós-Sós Conjecture

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Guang-ming Li, Jian-hua Yin
{"title":"A Potential Degree Sequence Problem of the Loebl-Komlós-Sós Conjecture","authors":"Guang-ming Li,&nbsp;Jian-hua Yin","doi":"10.1007/s10255-024-1055-1","DOIUrl":null,"url":null,"abstract":"<div><p>A non-increasing sequence <i>π</i> = (<i>d</i><sub>1</sub>, ⋯, <i>d</i><sub><i>n</i></sub>) of nonnegative integers is said to be a <i>graphic sequence</i> if it is realizable by a simple graph <i>G</i> on <i>n</i> vertices. In this case, <i>G</i> is referred to as a <i>realization</i> of <i>π</i>. In terms of graphic sequences, the Loebl-Komlós-Sós conjecture states that for any integers <i>k</i> and <i>n</i>, if <i>π</i> = (<i>d</i><sub>1</sub>, ⋯, <i>d</i><sub><i>n</i></sub>) is a graphic sequence with <span>\\({d_{\\left\\lceil {{n \\over 2}} \\right\\rceil}} \\ge k\\)</span>, then every realization of <i>π</i> contains all trees with <i>k</i> edges as subgraphs. This problem can be viewed as a forcible degree sequence problem. In this paper, we consider a potential degree sequence problem of the Loebl-Komlós-Sós conjecture, that is, we prove that for any integers <i>k</i> and <i>n</i>, if <i>π</i> = {<i>d</i><sub>1</sub>, ⋯, <i>d</i><sub><i>n</i></sub>) is a graphic sequence with <span>\\({d_{\\left\\lceil {{n \\over 2}} \\right\\rceil}} \\ge k\\)</span>, then there is a realization of <i>π</i> containing all trees with <i>k</i> edges as subgraphs.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"41 4","pages":"1066 - 1077"},"PeriodicalIF":0.9000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1055-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A non-increasing sequence π = (d1, ⋯, dn) of nonnegative integers is said to be a graphic sequence if it is realizable by a simple graph G on n vertices. In this case, G is referred to as a realization of π. In terms of graphic sequences, the Loebl-Komlós-Sós conjecture states that for any integers k and n, if π = (d1, ⋯, dn) is a graphic sequence with \({d_{\left\lceil {{n \over 2}} \right\rceil}} \ge k\), then every realization of π contains all trees with k edges as subgraphs. This problem can be viewed as a forcible degree sequence problem. In this paper, we consider a potential degree sequence problem of the Loebl-Komlós-Sós conjecture, that is, we prove that for any integers k and n, if π = {d1, ⋯, dn) is a graphic sequence with \({d_{\left\lceil {{n \over 2}} \right\rceil}} \ge k\), then there is a realization of π containing all trees with k edges as subgraphs.

Loebl-Komlós-Sós猜想的一个潜在度序列问题
非负整数的非递增序列π = (d1,⋯,dn),如果它可以通过n个顶点上的简单图G来实现,则称为图序列。在这种情况下,G被称为π的一个实现。在图序列方面,Loebl-Komlós-Sós猜想表明,对于任意整数k和n,如果π = (d1,⋯,dn)是一个具有\({d_{\left\lceil {{n \ / 2}} \right\rceil}} \ gk \)的图序列,则π的每个实现都包含所有具有k条边的树作为子图。这个问题可以看作是一个强制度序列问题。本文考虑Loebl-Komlós-Sós猜想的一个潜在度序列问题,即证明对于任意整数k和n,如果π = {d1,⋯,dn)是一个具有\({d_{\left\lceil {{n \ / 2}} \right\rceil}} \ gk \)的图序列,则存在π包含所有具有k条边的树作为子图的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信