Maximum entropy principle handled by using complex fractional moments

IF 2.1 3区 工程技术 Q3 MECHANICS
Lizhi Niu, Mario Di Paola, Antonina Pirrotta, Wei Xu
{"title":"Maximum entropy principle handled by using complex fractional moments","authors":"Lizhi Niu,&nbsp;Mario Di Paola,&nbsp;Antonina Pirrotta,&nbsp;Wei Xu","doi":"10.1007/s11012-025-01949-9","DOIUrl":null,"url":null,"abstract":"<div><p>A novel Maximum Entropy Principle method constrained by Complex Fractional Moments is proposed in this paper, which can be applied for reconstructing of approximate probability distribution equations with few complex fractional moments. By introducing complex fractional moments with different imaginary parameters into the entropy functional, an extended entropy functional with unknown Lagrange multipliers is constructed, which is utilized for deriving the approximate probability density function. The new method is extended to obtaining probability density function in stochastic dynamic systems based on the complex fractional moment equations which is derived from Fokker–Planck-Kolmogorov equation. Numerical simulations verified the effectiveness of the approach.</p></div>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"60 8","pages":"2607 - 2620"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11012-025-01949-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

A novel Maximum Entropy Principle method constrained by Complex Fractional Moments is proposed in this paper, which can be applied for reconstructing of approximate probability distribution equations with few complex fractional moments. By introducing complex fractional moments with different imaginary parameters into the entropy functional, an extended entropy functional with unknown Lagrange multipliers is constructed, which is utilized for deriving the approximate probability density function. The new method is extended to obtaining probability density function in stochastic dynamic systems based on the complex fractional moment equations which is derived from Fokker–Planck-Kolmogorov equation. Numerical simulations verified the effectiveness of the approach.

利用复分数矩处理最大熵原理
提出了一种受复分数阶矩约束的最大熵原理方法,该方法可用于具有少量复分数阶矩的近似概率分布方程的重构。通过在熵泛函中引入具有不同虚参的复分数阶矩,构造了具有未知拉格朗日乘子的扩展熵泛函,并利用该扩展熵泛函导出了近似的概率密度函数。将该方法推广到基于由Fokker-Planck-Kolmogorov方程导出的复分数阶矩方程的随机动力系统的概率密度函数。数值仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Meccanica
Meccanica 物理-力学
CiteScore
4.70
自引率
3.70%
发文量
151
审稿时长
7 months
期刊介绍: Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics. Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences. Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信