{"title":"Waterborne polyurethane toughened carbon nanotube paper with excellent Joule heating properties and strain-sensing potential","authors":"Ru Chen, Guangtai Zhao, Xinmiao Cao, Wenxuan Wang, Yunxiang Xiao, Simeng Tian, Jize Dong","doi":"10.1007/s42823-025-00934-2","DOIUrl":null,"url":null,"abstract":"<div><p>Currently, carbon nanotubes (CNTs) paper (also called Buckypaper, BP) is highly promising for application in flexible electronic materials. However, the lack of flexibility and durability of BP greatly affects the comprehensive performance. Here, we propose a simple method for manufacturing a waterborne polyurethane (WPU) toughened carbon nanotube paper (WPU-BP) with excellent overall performance through vacuum filtration. In WPU-BP, as the content of WPU increased from 0 to 48.3%, the tensile strength increased from 8.08 to 16.25 MPa, and the elongation at break increased from 2.14 to 225.04%, while the conductivity decreased from 41.34 to 20.33 S/cm. The WPU-BP with the WPU content of 18.9% (CNP8) demonstrated the optimum strain sensing performance. The gauge factor of CNP8 can reach 8.57 with a response time of 145 ms. It can detect a wide range of body movements from large joint movements to slight breathing, and exhibits high stability, maintaining high stability even after 1000 cycles. In addition, CNP8 shows excellent Joule heating performance, it can reach 186.1 °C at 5 V, with heating and cooling times of only 16 and 18 s, respectively, as well as with good reproducibility. In a word, the as-prepared WPU-BP exhibits excellent both strain sensing performance and Joule heating effect, and holds significant potential for applications in heating devices and wearable sensors.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"35 5","pages":"2423 - 2434"},"PeriodicalIF":5.8000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-025-00934-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, carbon nanotubes (CNTs) paper (also called Buckypaper, BP) is highly promising for application in flexible electronic materials. However, the lack of flexibility and durability of BP greatly affects the comprehensive performance. Here, we propose a simple method for manufacturing a waterborne polyurethane (WPU) toughened carbon nanotube paper (WPU-BP) with excellent overall performance through vacuum filtration. In WPU-BP, as the content of WPU increased from 0 to 48.3%, the tensile strength increased from 8.08 to 16.25 MPa, and the elongation at break increased from 2.14 to 225.04%, while the conductivity decreased from 41.34 to 20.33 S/cm. The WPU-BP with the WPU content of 18.9% (CNP8) demonstrated the optimum strain sensing performance. The gauge factor of CNP8 can reach 8.57 with a response time of 145 ms. It can detect a wide range of body movements from large joint movements to slight breathing, and exhibits high stability, maintaining high stability even after 1000 cycles. In addition, CNP8 shows excellent Joule heating performance, it can reach 186.1 °C at 5 V, with heating and cooling times of only 16 and 18 s, respectively, as well as with good reproducibility. In a word, the as-prepared WPU-BP exhibits excellent both strain sensing performance and Joule heating effect, and holds significant potential for applications in heating devices and wearable sensors.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.