Xueying Liu, Jakhongir Bekmirzaev, Carine Robert, Régis M. Gauvin and Christophe M. Thomas
{"title":"Construction and deconstruction: recent advances in degradable silicon-based polymers","authors":"Xueying Liu, Jakhongir Bekmirzaev, Carine Robert, Régis M. Gauvin and Christophe M. Thomas","doi":"10.1039/D5GC02535D","DOIUrl":null,"url":null,"abstract":"<p >This review article presents recent advances in the design, synthesis, degradation, and recycling of degradable silicon-based polymers, with a focus on poly(silyl ether)s, and poly(silyl ester)s. These materials offer a promising route toward sustainable polymer technologies by integrating labile Si–O–C and Si–O–C(<img>O) linkages into polymer backbones, enabling controlled degradation without compromising performance. This article details synthetic strategies including step-growth and chain-growth polymerizations, explores degradation mechanisms under various chemical conditions, and highlights emerging catalytic systems, ranging from noble metals to earth-abundant and metal-free catalysts. Challenges and future directions for integrating degradability with high-performance properties are also discussed.</p>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":" 39","pages":" 12002-12028"},"PeriodicalIF":9.2000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/gc/d5gc02535d","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This review article presents recent advances in the design, synthesis, degradation, and recycling of degradable silicon-based polymers, with a focus on poly(silyl ether)s, and poly(silyl ester)s. These materials offer a promising route toward sustainable polymer technologies by integrating labile Si–O–C and Si–O–C(O) linkages into polymer backbones, enabling controlled degradation without compromising performance. This article details synthetic strategies including step-growth and chain-growth polymerizations, explores degradation mechanisms under various chemical conditions, and highlights emerging catalytic systems, ranging from noble metals to earth-abundant and metal-free catalysts. Challenges and future directions for integrating degradability with high-performance properties are also discussed.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.