Band structure engineering for a graphitic carbon nitride-based hybrid with improved photocatalytic CO2 reduction performance

IF 2.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Yanrui Li, Xuehao Li, Bozhan Li, Ruyu Guo and Xiang Gao
{"title":"Band structure engineering for a graphitic carbon nitride-based hybrid with improved photocatalytic CO2 reduction performance","authors":"Yanrui Li, Xuehao Li, Bozhan Li, Ruyu Guo and Xiang Gao","doi":"10.1039/D5NJ02600H","DOIUrl":null,"url":null,"abstract":"<p >Graphitic carbon nitride has emerged as a sustainable photocatalyst for CO<small><sub>2</sub></small> reduction, yet its efficiency is constrained by narrow light absorption and inefficient charge separation. To overcome these limitations, this work introduces a dual-engineering strategy combining doping and thermodynamic band structure regulation. Boron (B) doping of graphitic carbon nitride nanosheets (CNNs) at different temperatures (BCN<small><sub><em>x</em></sub></small>) induces a maximum 0.12 eV bandgap narrowing and upward conduction band shift, extending light absorption to 457 nm. By coupling BCN<small><sub><em>x</em></sub></small> with sodium 2,5,8-tri(40-pyridyl)-1,3,4,6,7,9-hexaazaphenalenate (TPHAP), we achieve adjustable band alignment, where B-CN<small><sub>400</sub></small>/TPHAP exhibited the optimal offset of the conduction band (Δ<em>E</em><small><sub>CB</sub></small> = 0.43 eV), creating a strong interfacial driving force for charge separation. This optimized alignment drives efficient charge separation and transfer, yielding a record CO production rate of 60.5 μmol g<small><sup>−1</sup></small> with 97.1% CO selectivity. Furthermore, through systematic characterization studies, we investigated the optimal band alignment matching to determine its impact on the formation of band offset. This study establishes a universal paradigm for photocatalytic material design, demonstrating that synergistic band structure modulation and interfacial engineering can unlock the full potential of hybrids for solar fuel production.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 39","pages":" 17362-17369"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d5nj02600h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Graphitic carbon nitride has emerged as a sustainable photocatalyst for CO2 reduction, yet its efficiency is constrained by narrow light absorption and inefficient charge separation. To overcome these limitations, this work introduces a dual-engineering strategy combining doping and thermodynamic band structure regulation. Boron (B) doping of graphitic carbon nitride nanosheets (CNNs) at different temperatures (BCNx) induces a maximum 0.12 eV bandgap narrowing and upward conduction band shift, extending light absorption to 457 nm. By coupling BCNx with sodium 2,5,8-tri(40-pyridyl)-1,3,4,6,7,9-hexaazaphenalenate (TPHAP), we achieve adjustable band alignment, where B-CN400/TPHAP exhibited the optimal offset of the conduction band (ΔECB = 0.43 eV), creating a strong interfacial driving force for charge separation. This optimized alignment drives efficient charge separation and transfer, yielding a record CO production rate of 60.5 μmol g−1 with 97.1% CO selectivity. Furthermore, through systematic characterization studies, we investigated the optimal band alignment matching to determine its impact on the formation of band offset. This study establishes a universal paradigm for photocatalytic material design, demonstrating that synergistic band structure modulation and interfacial engineering can unlock the full potential of hybrids for solar fuel production.

Abstract Image

具有改进光催化CO2还原性能的氮化碳石墨基杂化物的能带结构工程
石墨氮化碳作为一种可持续的CO2还原光催化剂已经出现,但其效率受到光吸收窄和电荷分离效率低的限制。为了克服这些限制,本工作引入了一种结合掺杂和热力学能带结构调节的双工程策略。硼(B)掺杂在不同温度下的石墨氮化碳纳米片(CNNs) (BCNx)导致最大带隙缩小0.12 eV,导带向上移动,光吸收扩展到457 nm。通过将BCNx与2,5,8-三(40-吡啶基)-1,3,4,6,7,9-六氮杂苯烯酸钠(TPHAP)偶联,我们实现了可调节的带对齐,其中B-CN400/TPHAP表现出最佳的导带偏移(ΔECB = 0.43 eV),为电荷分离创造了强大的界面驱动力。这种优化的排列驱动了高效的电荷分离和转移,CO产率达到了创纪录的60.5 μmol g−1,CO选择性为97.1%。此外,通过系统的表征研究,我们研究了最佳波段对准匹配,以确定其对波段偏移形成的影响。这项研究为光催化材料设计建立了一个通用范例,表明协同能带结构调制和界面工程可以释放混合动力太阳能燃料生产的全部潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信