Zijian Long;Haopeng Wang;Haiwei Dong;Abdulmotaleb El Saddik
{"title":"Adaptive Social Metaverse Streaming Based on Federated Multiagent Deep Reinforcement Learning","authors":"Zijian Long;Haopeng Wang;Haiwei Dong;Abdulmotaleb El Saddik","doi":"10.1109/TCSS.2025.3555419","DOIUrl":null,"url":null,"abstract":"The social metaverse is a growing digital ecosystem that blends virtual and physical worlds. It allows users to interact socially, work, shop, and enjoy entertainment. However, privacy remains a major challenge, as immersive interactions require continuous collection of biometric and behavioral data. At the same time, ensuring high-quality, low-latency streaming is difficult due to the demands of real-time interaction, immersive rendering, and bandwidth optimization. To address these issues, we propose adaptive social metaverse streaming (ASMS), a novel streaming system based on federated multiagent proximal policy optimization (F-MAPPO). ASMS leverages F-MAPPO, which integrates federated learning (FL) and deep reinforcement learning (DRL) to dynamically adjust streaming bit rates while preserving user privacy. Experimental results show that ASMS improves user experience by at least 14% compared to existing streaming methods across various network conditions. Therefore, ASMS enhances the social metaverse experience by providing seamless and immersive streaming, even in dynamic and resource-constrained networks, while ensuring that sensitive user data remain on local devices.","PeriodicalId":13044,"journal":{"name":"IEEE Transactions on Computational Social Systems","volume":"12 5","pages":"3804-3815"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Social Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10955488/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0
Abstract
The social metaverse is a growing digital ecosystem that blends virtual and physical worlds. It allows users to interact socially, work, shop, and enjoy entertainment. However, privacy remains a major challenge, as immersive interactions require continuous collection of biometric and behavioral data. At the same time, ensuring high-quality, low-latency streaming is difficult due to the demands of real-time interaction, immersive rendering, and bandwidth optimization. To address these issues, we propose adaptive social metaverse streaming (ASMS), a novel streaming system based on federated multiagent proximal policy optimization (F-MAPPO). ASMS leverages F-MAPPO, which integrates federated learning (FL) and deep reinforcement learning (DRL) to dynamically adjust streaming bit rates while preserving user privacy. Experimental results show that ASMS improves user experience by at least 14% compared to existing streaming methods across various network conditions. Therefore, ASMS enhances the social metaverse experience by providing seamless and immersive streaming, even in dynamic and resource-constrained networks, while ensuring that sensitive user data remain on local devices.
期刊介绍:
IEEE Transactions on Computational Social Systems focuses on such topics as modeling, simulation, analysis and understanding of social systems from the quantitative and/or computational perspective. "Systems" include man-man, man-machine and machine-machine organizations and adversarial situations as well as social media structures and their dynamics. More specifically, the proposed transactions publishes articles on modeling the dynamics of social systems, methodologies for incorporating and representing socio-cultural and behavioral aspects in computational modeling, analysis of social system behavior and structure, and paradigms for social systems modeling and simulation. The journal also features articles on social network dynamics, social intelligence and cognition, social systems design and architectures, socio-cultural modeling and representation, and computational behavior modeling, and their applications.