Ye Zhang;Qing Gao;Rong Hu;Qingtang Ding;Boyang Li;Yulan Guo
{"title":"Differentiable Prior-Driven Data Augmentation for Sensor-Based Human Activity Recognition","authors":"Ye Zhang;Qing Gao;Rong Hu;Qingtang Ding;Boyang Li;Yulan Guo","doi":"10.1109/TCSS.2025.3565414","DOIUrl":null,"url":null,"abstract":"Sensor-based human activity recognition (HAR) usually suffers from the problem of insufficient annotated data, due to the difficulty in labeling the intuitive signals of wearable sensors. To this end, recent advances have adopted handcrafted operations or generative models for data augmentation. The handcrafted operations are driven by some physical priors of human activities, e.g., action distortion and strength fluctuations. However, these approaches may face challenges in maintaining semantic data properties. Although the generative models have better data adaptability, it is difficult for them to incorporate important action priors into data generation. This article proposes a differentiable prior-driven data augmentation framework for HAR. First, we embed the handcrafted augmentation operations into a differentiable module, which adaptively selects and optimizes the operations to be combined together. Then, we construct a generative module to add controllable perturbations to the data derived by the handcrafted operations and further improve the diversity of data augmentation. By integrating the handcrafted operation module and the generative module into one learnable framework, the generalization performance of the recognition models is enhanced effectively. Extensive experimental results with three different classifiers on five public datasets demonstrate the effectiveness of the proposed framework. Project page: <uri>https://github.com/crocodilegogogo/DriveData-Under-Review</uri>.","PeriodicalId":13044,"journal":{"name":"IEEE Transactions on Computational Social Systems","volume":"12 5","pages":"3778-3790"},"PeriodicalIF":4.5000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Social Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11027082/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Sensor-based human activity recognition (HAR) usually suffers from the problem of insufficient annotated data, due to the difficulty in labeling the intuitive signals of wearable sensors. To this end, recent advances have adopted handcrafted operations or generative models for data augmentation. The handcrafted operations are driven by some physical priors of human activities, e.g., action distortion and strength fluctuations. However, these approaches may face challenges in maintaining semantic data properties. Although the generative models have better data adaptability, it is difficult for them to incorporate important action priors into data generation. This article proposes a differentiable prior-driven data augmentation framework for HAR. First, we embed the handcrafted augmentation operations into a differentiable module, which adaptively selects and optimizes the operations to be combined together. Then, we construct a generative module to add controllable perturbations to the data derived by the handcrafted operations and further improve the diversity of data augmentation. By integrating the handcrafted operation module and the generative module into one learnable framework, the generalization performance of the recognition models is enhanced effectively. Extensive experimental results with three different classifiers on five public datasets demonstrate the effectiveness of the proposed framework. Project page: https://github.com/crocodilegogogo/DriveData-Under-Review.
期刊介绍:
IEEE Transactions on Computational Social Systems focuses on such topics as modeling, simulation, analysis and understanding of social systems from the quantitative and/or computational perspective. "Systems" include man-man, man-machine and machine-machine organizations and adversarial situations as well as social media structures and their dynamics. More specifically, the proposed transactions publishes articles on modeling the dynamics of social systems, methodologies for incorporating and representing socio-cultural and behavioral aspects in computational modeling, analysis of social system behavior and structure, and paradigms for social systems modeling and simulation. The journal also features articles on social network dynamics, social intelligence and cognition, social systems design and architectures, socio-cultural modeling and representation, and computational behavior modeling, and their applications.