Xuan Luo;Bin Liang;Qianlong Wang;Jing Li;Erik Cambria;Xiaojun Zhang;Yulan He;Min Yang;Ruifeng Xu
{"title":"A Literature Survey on Multimodal and Multilingual Sexism Detection","authors":"Xuan Luo;Bin Liang;Qianlong Wang;Jing Li;Erik Cambria;Xiaojun Zhang;Yulan He;Min Yang;Ruifeng Xu","doi":"10.1109/TCSS.2025.3561921","DOIUrl":null,"url":null,"abstract":"Sexism has become a pressing issue, driven by the rapid-spreading influence of societal norms, media portrayals, and online platforms that perpetuate and amplify gender biases. Curbing sexism has emerged as a critical challenge globally. Being capable of recognizing sexist statements and behaviors is of particular importance since it is the first step in mind change. This survey provides an extensive overview of recent advancements in sexism detection. We present details of the various resources used in this field and methodologies applied to the task, covering different languages, modalities, models, and approaches. Moreover, we examine the specific challenges these models encounter in accurately identifying and classifying sexism. Additionally, we highlight areas that require further research and propose potential new directions for future exploration in the domain of sexism detection. Through this comprehensive exploration, we strive to contribute to the advancement of interdisciplinary research, fostering a collective effort to combat sexism in its multifaceted manifestations.","PeriodicalId":13044,"journal":{"name":"IEEE Transactions on Computational Social Systems","volume":"12 5","pages":"3709-3727"},"PeriodicalIF":4.5000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Social Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11022986/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Sexism has become a pressing issue, driven by the rapid-spreading influence of societal norms, media portrayals, and online platforms that perpetuate and amplify gender biases. Curbing sexism has emerged as a critical challenge globally. Being capable of recognizing sexist statements and behaviors is of particular importance since it is the first step in mind change. This survey provides an extensive overview of recent advancements in sexism detection. We present details of the various resources used in this field and methodologies applied to the task, covering different languages, modalities, models, and approaches. Moreover, we examine the specific challenges these models encounter in accurately identifying and classifying sexism. Additionally, we highlight areas that require further research and propose potential new directions for future exploration in the domain of sexism detection. Through this comprehensive exploration, we strive to contribute to the advancement of interdisciplinary research, fostering a collective effort to combat sexism in its multifaceted manifestations.
期刊介绍:
IEEE Transactions on Computational Social Systems focuses on such topics as modeling, simulation, analysis and understanding of social systems from the quantitative and/or computational perspective. "Systems" include man-man, man-machine and machine-machine organizations and adversarial situations as well as social media structures and their dynamics. More specifically, the proposed transactions publishes articles on modeling the dynamics of social systems, methodologies for incorporating and representing socio-cultural and behavioral aspects in computational modeling, analysis of social system behavior and structure, and paradigms for social systems modeling and simulation. The journal also features articles on social network dynamics, social intelligence and cognition, social systems design and architectures, socio-cultural modeling and representation, and computational behavior modeling, and their applications.