Multiscale structural origins of stress annealing tailored magnetic properties in Fe-based nanocrystalline cores

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Jianqiang Zhang , Yanjun Qin , Yuxiang Zhao , Jianzhen An , Xiangbin Li , Ke Wang , Wenqiang Dang , Xiaqing Zhang , Xuefu Kang , Wenbo Gou , Xiaobin Liu , Xiaozhen Fan , Yunzhang Fang
{"title":"Multiscale structural origins of stress annealing tailored magnetic properties in Fe-based nanocrystalline cores","authors":"Jianqiang Zhang ,&nbsp;Yanjun Qin ,&nbsp;Yuxiang Zhao ,&nbsp;Jianzhen An ,&nbsp;Xiangbin Li ,&nbsp;Ke Wang ,&nbsp;Wenqiang Dang ,&nbsp;Xiaqing Zhang ,&nbsp;Xuefu Kang ,&nbsp;Wenbo Gou ,&nbsp;Xiaobin Liu ,&nbsp;Xiaozhen Fan ,&nbsp;Yunzhang Fang","doi":"10.1016/j.jallcom.2025.184231","DOIUrl":null,"url":null,"abstract":"<div><div>Fe-based nanocrystalline alloys (FNAs) are critical for high-frequency electronics, yet precise magnetic property control remains challenging. Here, a continuous stress annealing (CSA) technique is developed to regulate AC/DC soft magnetic properties of Fe-based nanocrystalline cores (FNCs) via thermomechanical field coupling (TFC). A non-monotonic stress-property relationship is revealed: coercivity (<em>H</em><sub>c</sub>), magnetic anisotropy constant (<em>K</em>), and AC loss (<em>P</em><sub>s</sub>) decrease first and then increase with stress, while permeability (<em>μ</em><sub>e</sub>) exhibits the opposite trend. There exists an optimal state at σ≈ 28.6 MPa, where <em>H</em><sub>c</sub>= 5.4 A/m, <em>μ</em><sub>e</sub>= 6532.5, <em>P</em><sub>s</sub>= 401.2 W/kg (at 300 mT, 200 kHz). To unveil the structural origins, a multiscale characterization approach is employed, integrating atomic force microscopy (AFM), magnetic force microscopy (MFM), <em>in-situ</em> synchrotron radiation X-ray diffraction (SRXRD), and high-resolution transmission electron microscopy (HRTEM). The findings show that low-stress annealing (LSA, σ&lt;28.6 MPa) yields isotropic nanocrystalline distribution and irregular strip-like domains, whereas high-stress annealing (HSA, σ &gt; 28.6 MPa) induces lamellar domains, anisotropic nanocrystalline distribution and lattice distortion, and reduced short-range order (SRO) clusters (from 18.15 vol% to 15.62 vol%). We propose a competitive coupling model where magnetic anisotropy (MA) arises from mesoscopic nanocrystalline distribution (MND), microscopic lattice distortion (MLD), and atomic-scale SRO clusters, and optimal properties at σ≈ 28.6 MPa stem from the synergy of MND and MLD in suppressing atomic-scale SRO clusters. This work establishes a quantitative multiscale framework for designing high-performance soft magnetic materials.</div></div>","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"1043 ","pages":"Article 184231"},"PeriodicalIF":6.3000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925838825057937","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Fe-based nanocrystalline alloys (FNAs) are critical for high-frequency electronics, yet precise magnetic property control remains challenging. Here, a continuous stress annealing (CSA) technique is developed to regulate AC/DC soft magnetic properties of Fe-based nanocrystalline cores (FNCs) via thermomechanical field coupling (TFC). A non-monotonic stress-property relationship is revealed: coercivity (Hc), magnetic anisotropy constant (K), and AC loss (Ps) decrease first and then increase with stress, while permeability (μe) exhibits the opposite trend. There exists an optimal state at σ≈ 28.6 MPa, where Hc= 5.4 A/m, μe= 6532.5, Ps= 401.2 W/kg (at 300 mT, 200 kHz). To unveil the structural origins, a multiscale characterization approach is employed, integrating atomic force microscopy (AFM), magnetic force microscopy (MFM), in-situ synchrotron radiation X-ray diffraction (SRXRD), and high-resolution transmission electron microscopy (HRTEM). The findings show that low-stress annealing (LSA, σ<28.6 MPa) yields isotropic nanocrystalline distribution and irregular strip-like domains, whereas high-stress annealing (HSA, σ > 28.6 MPa) induces lamellar domains, anisotropic nanocrystalline distribution and lattice distortion, and reduced short-range order (SRO) clusters (from 18.15 vol% to 15.62 vol%). We propose a competitive coupling model where magnetic anisotropy (MA) arises from mesoscopic nanocrystalline distribution (MND), microscopic lattice distortion (MLD), and atomic-scale SRO clusters, and optimal properties at σ≈ 28.6 MPa stem from the synergy of MND and MLD in suppressing atomic-scale SRO clusters. This work establishes a quantitative multiscale framework for designing high-performance soft magnetic materials.
铁基纳米晶磁芯应力退火的多尺度结构根源
铁基纳米晶合金(FNAs)对于高频电子器件至关重要,但精确的磁性控制仍然具有挑战性。本文研究了一种连续应力退火(CSA)技术,通过热-机械场耦合(TFC)调节铁基纳米晶铁芯(fnc)的AC/DC软磁性能。应力-性能呈非单调关系:矫顽力(Hc)、磁各向异性常数(K)和交流损耗(Ps)随应力的增加先减小后增大,磁导率(μe)则相反。存在一个最佳的状态σ≈28.6  MPa, Hc = 5.4  / m,μe = 6532.5,p = 401.2  W /公斤(300 mT, 200 千赫)。为了揭示结构起源,采用了多尺度表征方法,包括原子力显微镜(AFM)、磁力显微镜(MFM)、原位同步辐射x射线衍射(SRXRD)和高分辨率透射电子显微镜(HRTEM)。结果表明:低应力退火(LSA, σ<28.6 MPa)产生各向同性纳米晶分布和不规则条形畴,而高应力退火(HSA, σ<28.6 MPa)产生片层畴、各向异性纳米晶分布和晶格畸变,并减少了近程有序(SRO)团簇(从18.15 vol%降至15.62 vol%)。我们提出了一个竞争耦合模型,其中磁各向异性(MA)来自介观纳米晶体分布(MND)、微观晶格畸变(MLD)和原子尺度SRO团簇,σ≈ 28.6 MPa下的最佳性能源于MND和MLD在抑制原子尺度SRO团簇方面的协同作用。本研究为高性能软磁材料的设计建立了一个定量的多尺度框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信