{"title":"Survey of Neural Network Approaches to Target Tracking with an Emphasis on Interpretability","authors":"Marco Mari, Lauro Snidaro","doi":"10.1016/j.inffus.2025.103789","DOIUrl":null,"url":null,"abstract":"<div><div>This survey examines recent advances in target tracking methods that incorporate neural networks, with a particular emphasis on their application to complex and dynamic tracking scenarios. While classical model-based approaches have traditionally dominated the field, they often struggle with nonlinear dynamics and unpredictable maneuvers. Conversely, learning-based methods, particularly those employing neural architectures, present compelling alternatives by leveraging data-driven representations and adaptive capabilities. This work provides a concise overview of conventional tracking frameworks to contextualize the evolution of neural approaches. A central contribution of the survey is a novel classification of neural tracking methods based on their level of interpretability, offering a unique perspective on how transparency and explainability are addressed in the design of modern tracking systems. The review synthesizes trends across a broad range of applications, compares methodological trade-offs, and identifies key challenges and open research directions, particularly in balancing performance with trustworthiness in real-world deployment.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"127 ","pages":"Article 103789"},"PeriodicalIF":15.5000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253525008516","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This survey examines recent advances in target tracking methods that incorporate neural networks, with a particular emphasis on their application to complex and dynamic tracking scenarios. While classical model-based approaches have traditionally dominated the field, they often struggle with nonlinear dynamics and unpredictable maneuvers. Conversely, learning-based methods, particularly those employing neural architectures, present compelling alternatives by leveraging data-driven representations and adaptive capabilities. This work provides a concise overview of conventional tracking frameworks to contextualize the evolution of neural approaches. A central contribution of the survey is a novel classification of neural tracking methods based on their level of interpretability, offering a unique perspective on how transparency and explainability are addressed in the design of modern tracking systems. The review synthesizes trends across a broad range of applications, compares methodological trade-offs, and identifies key challenges and open research directions, particularly in balancing performance with trustworthiness in real-world deployment.
期刊介绍:
Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.