GF-SVD: Global knowledge-infused singular value decomposition of large language models

IF 15.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xiangxiang Gao, Weisheng Xie , Yuhan Lin, Chen Hang, Hongyang Han, Xiaolong Xu, Bo Liu
{"title":"GF-SVD: Global knowledge-infused singular value decomposition of large language models","authors":"Xiangxiang Gao,&nbsp;Weisheng Xie ,&nbsp;Yuhan Lin,&nbsp;Chen Hang,&nbsp;Hongyang Han,&nbsp;Xiaolong Xu,&nbsp;Bo Liu","doi":"10.1016/j.inffus.2025.103774","DOIUrl":null,"url":null,"abstract":"<div><div>Singular Value Decomposition (SVD) provides an efficient solution for compressing and accelerating Large Language Models (LLMs) without retraining or specialized hardware. Despite its advantages, current SVD-based LLMs compression methods suffer from three critical limitations that degrade performance: (1) Cross-domain knowledge preservation is compromised, (2) Layer-isolated decomposition disrupts inter-layer information flow, and (3) Gradual knowledge erosion caused by aggressive truncation of singular values and corresponding vectors. To overcome these, we propose GF-SVD, a novel framework that integrates: <strong>(1) Hierarchical Knowledge Infusion:</strong> Enhances dataset diversity by integrating hierarchical knowledge to improve cross-domain generalization, <strong>(2) Global Information Integration:</strong> Captures inter-layer dependencies and broader context via weighted aggregation of multi-layer feature matrices, and <strong>(3) Knowledge-Enhanced Truncation and Updating:</strong> Truncates and updates weights with infused dataset to mitigate knowledge erosion. Extensive experiments demonstrate that GF-SVD surpasses existing SVD-based LLMs compression methods across diverse tasks, including knowledge-intensive question answering, complex reasoning, physical system, and mathematical problem-solving. Notably, GF-SVD can also improve inference speed by 2.36x on GPUs and 2.74x on CPUs at 60 % compression ratio.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"127 ","pages":"Article 103774"},"PeriodicalIF":15.5000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156625352500836X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Singular Value Decomposition (SVD) provides an efficient solution for compressing and accelerating Large Language Models (LLMs) without retraining or specialized hardware. Despite its advantages, current SVD-based LLMs compression methods suffer from three critical limitations that degrade performance: (1) Cross-domain knowledge preservation is compromised, (2) Layer-isolated decomposition disrupts inter-layer information flow, and (3) Gradual knowledge erosion caused by aggressive truncation of singular values and corresponding vectors. To overcome these, we propose GF-SVD, a novel framework that integrates: (1) Hierarchical Knowledge Infusion: Enhances dataset diversity by integrating hierarchical knowledge to improve cross-domain generalization, (2) Global Information Integration: Captures inter-layer dependencies and broader context via weighted aggregation of multi-layer feature matrices, and (3) Knowledge-Enhanced Truncation and Updating: Truncates and updates weights with infused dataset to mitigate knowledge erosion. Extensive experiments demonstrate that GF-SVD surpasses existing SVD-based LLMs compression methods across diverse tasks, including knowledge-intensive question answering, complex reasoning, physical system, and mathematical problem-solving. Notably, GF-SVD can also improve inference speed by 2.36x on GPUs and 2.74x on CPUs at 60 % compression ratio.
GF-SVD:大型语言模型的全局知识注入奇异值分解
奇异值分解(SVD)为压缩和加速大型语言模型(llm)提供了一种有效的解决方案,无需重新训练或专门的硬件。尽管现有的基于奇异值分解的llm压缩方法具有诸多优点,但仍存在三个严重的缺陷,导致性能下降:(1)跨领域的知识保存受到损害;(2)层隔离分解破坏了层间的信息流;(3)奇异值和相应向量的激进截断导致知识逐渐侵蚀。为了克服这些问题,我们提出了一种新的框架GF-SVD,它集成了:(1)分层知识注入:通过整合分层知识来增强数据集的多样性,以提高跨域泛化;(2)全局信息集成:通过多层特征矩阵的加权聚合来捕获层间依赖关系和更广泛的背景;(3)知识增强截断和更新:截断和更新被注入数据集的权重,以减轻知识侵蚀。大量的实验表明,GF-SVD在不同的任务上优于现有的基于svd的llm压缩方法,包括知识密集型问题回答、复杂推理、物理系统和数学问题解决。值得注意的是,在60%的压缩比下,GF-SVD还可以将gpu上的推理速度提高2.36倍,在cpu上提高2.74倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信