Multi-membrane module for gas–liquid contact: Development of a methodology for side-stream ozone injection system applications

IF 4.3 2区 工程技术 Q2 ENGINEERING, CHEMICAL
Mateus P. Caixeta, Paulo H. Marrocos, Ricardo J. Santos, Isabel S. Fernandes, Vítor J.P. Vilar
{"title":"Multi-membrane module for gas–liquid contact: Development of a methodology for side-stream ozone injection system applications","authors":"Mateus P. Caixeta, Paulo H. Marrocos, Ricardo J. Santos, Isabel S. Fernandes, Vítor J.P. Vilar","doi":"10.1016/j.ces.2025.122722","DOIUrl":null,"url":null,"abstract":"This work proposes an alternative methodology to scale-up a tube-in-tube gas–liquid contacting membrane module by developing a full-scale multi-membrane module. A novel hybrid CFD-analytical model, previously developed to predict mass transfer coefficients and bubble dispersion of a bubbly flow in a tube-in-tube membrane module, is used to simulate the gas bubble dispersion into the water and predict the ozone-water mass transfer coefficient, the interfacial area and gas holdup of the concept membrane contacting module. The hydrodynamics and mass transfer phenomena within the multi-membrane module were investigated, aiming for its application in industrial side-stream ozone injection systems for the disinfection and resistant pollutant removal steps of freshwater/wastewater treatment processes. The study demonstrated that the module effectively dispersed bubbles into the liquid phase, resulting in homogenized ozonated water for every module design and inlet type proposed. The multi-membrane concept module generated the same order of magnitude of interfacial area (44 m<sup>−1</sup> and 128 m<sup>−1</sup> for 8 and 40 membranes, respectively) compared to standard gas–liquid contactors (from 1 m<sup>−1</sup> to 77 m<sup>−1</sup>) while operating at the lower bounds of the range of gas holdup values for these standard contactors <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mo stretchy=\"true\" is=\"true\"&gt;(&lt;/mo&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.779ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -846.5 389.5 1196.3\" width=\"0.905ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-28\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo is=\"true\" stretchy=\"true\">(</mo></math></span></span><script type=\"math/mml\"><math><mo stretchy=\"true\" is=\"true\">(</mo></math></script></span>0.7 % and 2.4 % for 8 and 40 membranes, respectively; whereas the conventional contactors remained within 1.5 % to 5.8 %). Consequently, the investigated module promoted an effective use of the injected gas. In addition, the deep comprehension of the gas–liquid mass transfer and flow behavior in membrane modules acquired through the proposed methodology enabled the optimization of multi-membrane gas–liquid contacting modules for industrial applications.","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"51 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ces.2025.122722","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work proposes an alternative methodology to scale-up a tube-in-tube gas–liquid contacting membrane module by developing a full-scale multi-membrane module. A novel hybrid CFD-analytical model, previously developed to predict mass transfer coefficients and bubble dispersion of a bubbly flow in a tube-in-tube membrane module, is used to simulate the gas bubble dispersion into the water and predict the ozone-water mass transfer coefficient, the interfacial area and gas holdup of the concept membrane contacting module. The hydrodynamics and mass transfer phenomena within the multi-membrane module were investigated, aiming for its application in industrial side-stream ozone injection systems for the disinfection and resistant pollutant removal steps of freshwater/wastewater treatment processes. The study demonstrated that the module effectively dispersed bubbles into the liquid phase, resulting in homogenized ozonated water for every module design and inlet type proposed. The multi-membrane concept module generated the same order of magnitude of interfacial area (44 m−1 and 128 m−1 for 8 and 40 membranes, respectively) compared to standard gas–liquid contactors (from 1 m−1 to 77 m−1) while operating at the lower bounds of the range of gas holdup values for these standard contactors (0.7 % and 2.4 % for 8 and 40 membranes, respectively; whereas the conventional contactors remained within 1.5 % to 5.8 %). Consequently, the investigated module promoted an effective use of the injected gas. In addition, the deep comprehension of the gas–liquid mass transfer and flow behavior in membrane modules acquired through the proposed methodology enabled the optimization of multi-membrane gas–liquid contacting modules for industrial applications.

Abstract Image

用于气液接触的多膜模块:用于侧流臭氧注入系统应用的方法学的开发
这项工作提出了一种替代方法,通过开发一个全尺寸的多膜模块来放大管中气液接触膜模块。利用一种新的混合cfd分析模型来模拟气泡在水中的扩散,并预测概念膜接触模块的臭氧-水传质系数、界面面积和气含率。该模型是先前开发的用于预测管中管膜模块中气泡流动的传质系数和气泡扩散的模型。研究了多膜模块内的流体动力学和传质现象,旨在将其应用于工业侧流臭氧注入系统,用于淡水/废水处理过程的消毒和抗性污染物去除步骤。研究表明,该模块可以有效地将气泡分散到液相中,从而得到均匀的臭氧化水。与标准气液接触器(从1 m−1到77 m−1)相比,多膜概念模块产生了相同数量级的界面面积(8和40膜分别为44 m−1和128 m−1),同时在这些标准接触器的气含率范围的下限运行(8和40膜分别为0.7 %和2.4 %;而传统接触器保持在1.5 %到5.8 %)。因此,所研究的模块促进了注入气体的有效利用。此外,通过提出的方法获得的对膜模块中气液传质和流动行为的深入理解,使工业应用的多膜气液接触模块的优化成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Science
Chemical Engineering Science 工程技术-工程:化工
CiteScore
7.50
自引率
8.50%
发文量
1025
审稿时长
50 days
期刊介绍: Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline. Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信