Spatially resolved reaction environments in mechanochemical upcycling of polymers

IF 19.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chem Pub Date : 2025-10-06 DOI:10.1016/j.chempr.2025.102754
Kinga Gołąbek, Yuchen Chang, Lauren R. Mellinger, Mariana V. Rodrigues, Cauê de Souza Coutinho Nogueira, Fabio B. Passos, Yutao Xing, Aline Ribeiro Passos, Mohammed H. Saffarini, Austin B. Isner, David S. Sholl, Carsten Sievers
{"title":"Spatially resolved reaction environments in mechanochemical upcycling of polymers","authors":"Kinga Gołąbek, Yuchen Chang, Lauren R. Mellinger, Mariana V. Rodrigues, Cauê de Souza Coutinho Nogueira, Fabio B. Passos, Yutao Xing, Aline Ribeiro Passos, Mohammed H. Saffarini, Austin B. Isner, David S. Sholl, Carsten Sievers","doi":"10.1016/j.chempr.2025.102754","DOIUrl":null,"url":null,"abstract":"Mechanochemical processing is an attractive and scalable approach for the upcycling of polymers. The complex and dynamic environment in ball milling, however, makes gaining insight into the physicochemical nature of the collisions driving mechanochemistry challenging, which, in turn, hampers the optimization of these processes. We used controlled single impacts followed by multiple spatially resolved analytical methods (focused ion beam microscopy, Raman spectro-microscopy, and small-angle X-ray scattering) and material point method simulations to gain unprecedented information about mechanochemical depolymerization of poly(ethylene terephthalate). These measurements highlight the contributions of plastic deformation, amorphization, and depolymerization during the transfer of kinetic energy in collisions relevant to ball mills and will enable reactor models based on fundamental kinetics.","PeriodicalId":268,"journal":{"name":"Chem","volume":"31 1","pages":""},"PeriodicalIF":19.6000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2025.102754","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mechanochemical processing is an attractive and scalable approach for the upcycling of polymers. The complex and dynamic environment in ball milling, however, makes gaining insight into the physicochemical nature of the collisions driving mechanochemistry challenging, which, in turn, hampers the optimization of these processes. We used controlled single impacts followed by multiple spatially resolved analytical methods (focused ion beam microscopy, Raman spectro-microscopy, and small-angle X-ray scattering) and material point method simulations to gain unprecedented information about mechanochemical depolymerization of poly(ethylene terephthalate). These measurements highlight the contributions of plastic deformation, amorphization, and depolymerization during the transfer of kinetic energy in collisions relevant to ball mills and will enable reactor models based on fundamental kinetics.

Abstract Image

聚合物机械化学升级循环中的空间分解反应环境
机械化学处理是一种有吸引力和可扩展的聚合物升级回收方法。然而,球磨过程中复杂的动态环境使得深入了解碰撞驱动机械化学的物理化学性质具有挑战性,这反过来又阻碍了这些过程的优化。我们采用受控的单次冲击,随后采用多种空间分辨分析方法(聚焦离子束显微镜、拉曼光谱显微镜和小角度x射线散射)和物质点法模拟,以获得有关聚对苯二甲酸乙酯机械化学解聚的前所未有的信息。这些测量强调了在与球磨机相关的碰撞中动能转移过程中的塑性变形、非晶化和解聚的贡献,并将使基于基本动力学的反应器模型成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chem
Chem Environmental Science-Environmental Chemistry
CiteScore
32.40
自引率
1.30%
发文量
281
期刊介绍: Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信