Louis P. Conway, Michelle A. Estrada, Weichao Li, Stephen Walker, Benjamin Mielich-Süss, Anurupa Shrestha, Matthew Townsend, Jürgen Korffmann, Greg Potts, Janice Lee, Kenneth P. Robinson, Shiyao Wang, Brian Bierie, John R. Koenig, Phil Cox, Paul Richardson, Manisha Jhala, Becca McCloud, Sujatha Gopalakrishnan, Kevin Woller, Christopher G. Parker
{"title":"Discovery of a tau-aggregate clearing compound that covalently targets P4HB","authors":"Louis P. Conway, Michelle A. Estrada, Weichao Li, Stephen Walker, Benjamin Mielich-Süss, Anurupa Shrestha, Matthew Townsend, Jürgen Korffmann, Greg Potts, Janice Lee, Kenneth P. Robinson, Shiyao Wang, Brian Bierie, John R. Koenig, Phil Cox, Paul Richardson, Manisha Jhala, Becca McCloud, Sujatha Gopalakrishnan, Kevin Woller, Christopher G. Parker","doi":"10.1016/j.chembiol.2025.09.006","DOIUrl":null,"url":null,"abstract":"The improper folding and aggregation of tau are linked to several neurodegenerative diseases affecting millions worldwide. However, the pathogenesis of tauopathies remains poorly understood, resulting in limited effective treatments. Here, we employ an integrated chemoproteomic phenotypic strategy to identify druggable targets and corresponding chemical probes for the treatment of tauopathies. We identified and optimized an indole-amine compound that potently and extensively clears tau aggregates in two human tauopathy models. Mechanistic and chemoproteomic studies implicate protein disulfide isomerase 1 (P4HB) as the primary target, forming covalent adducts upon metabolic activation. Knockdown of P4HB reduced tau aggregates in three tauopathy models, including an <em>ex vivo</em> murine neuron preclinical model. Functional characterization revealed the compound induces mild endoplasmic reticulum (ER)-stress responses as assessed by RNA sequencing and whole proteomic profiling. Our findings highlight P4HB as a potential therapeutic target for treatment of tauopathies.","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"12 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.chembiol.2025.09.006","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The improper folding and aggregation of tau are linked to several neurodegenerative diseases affecting millions worldwide. However, the pathogenesis of tauopathies remains poorly understood, resulting in limited effective treatments. Here, we employ an integrated chemoproteomic phenotypic strategy to identify druggable targets and corresponding chemical probes for the treatment of tauopathies. We identified and optimized an indole-amine compound that potently and extensively clears tau aggregates in two human tauopathy models. Mechanistic and chemoproteomic studies implicate protein disulfide isomerase 1 (P4HB) as the primary target, forming covalent adducts upon metabolic activation. Knockdown of P4HB reduced tau aggregates in three tauopathy models, including an ex vivo murine neuron preclinical model. Functional characterization revealed the compound induces mild endoplasmic reticulum (ER)-stress responses as assessed by RNA sequencing and whole proteomic profiling. Our findings highlight P4HB as a potential therapeutic target for treatment of tauopathies.
Cell Chemical BiologyBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
14.70
自引率
2.30%
发文量
143
期刊介绍:
Cell Chemical Biology, a Cell Press journal established in 1994 as Chemistry & Biology, focuses on publishing crucial advances in chemical biology research with broad appeal to our diverse community, spanning basic scientists to clinicians. Pioneering investigations at the chemistry-biology interface, the journal fosters collaboration between these disciplines. We encourage submissions providing significant conceptual advancements of broad interest across chemical, biological, clinical, and related fields. Particularly sought are articles utilizing chemical tools to perturb, visualize, and measure biological systems, offering unique insights into molecular mechanisms, disease biology, and therapeutics.