Stomata-Inspired Intelligent High-Performance Hydrogel With on-Demand Gateable Electromagnetic-Interference Shielding.

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-10-06 DOI:10.1002/smll.202510156
Junwei Wang,Zhen Xiang,Yongqi Yin,Zichen Lu,Qiang Ren,Bin Yuan,Wei Lu
{"title":"Stomata-Inspired Intelligent High-Performance Hydrogel With on-Demand Gateable Electromagnetic-Interference Shielding.","authors":"Junwei Wang,Zhen Xiang,Yongqi Yin,Zichen Lu,Qiang Ren,Bin Yuan,Wei Lu","doi":"10.1002/smll.202510156","DOIUrl":null,"url":null,"abstract":"The development of intelligently adaptive electromagnetic interference (EMI) shielding materials remains constrained by the inherent trade-offs among dynamic tunability, mechanical robustness, and multifunctional integration. Inspired by stomatal regulation in plant guard cells, it has engineered an intelligent poly(N-isopropylacrylamide) (PNIPAM)/MXene-silver nanowires (AgNWs) (PMA) hydrogel whose biomimetic kinematics transcend trade-offs. This novel design deliberately emulated biological principles of osmotic-like actuation via PNIPAM phase transition, dynamic microchannel reconfiguration using a zinc oxide (ZnO) template, and ion-flux-inspired electron pathways through MXene-AgNWs networks interfaced with a zinc ion (Zn²⁺) electrolyte. Such structural ingenuity enables the simultaneous, on-demand tuning of electrical conductivity, hierarchical microarchitectures, and multifunctional properties. The resulting hydrogel exhibited a remarkable dynamic EMI shielding modulation of 61.1 dB, actuated solely through hydration-governed percolation. Crucially, the divergent stimulus responses imparted an intrinsic versatility that global electrothermal shrinkage to emulate stomatal closure for EMI shielding tunability, while localized photothermal bending reproduced guard-cell kinematics for soft actuators. Simultaneously, Zn2+-riveted cross-links endowed the hydrogel with exceptional mechanical toughness of 360.6 kJ m-3, while a wrinkle-nanobridge architecture integrated high-precision sensing, retaining a gauge factor (GF) of 2.11 across a 394% deformation window. Demonstrated in wireless communication toggling and muscle-movement monitoring, this biomimetic strategy establishes a paradigm for intelligent hydrogels, offering transformative potential for smart wearables and human-machine interfaces.","PeriodicalId":228,"journal":{"name":"Small","volume":"27 1","pages":"e10156"},"PeriodicalIF":12.1000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202510156","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of intelligently adaptive electromagnetic interference (EMI) shielding materials remains constrained by the inherent trade-offs among dynamic tunability, mechanical robustness, and multifunctional integration. Inspired by stomatal regulation in plant guard cells, it has engineered an intelligent poly(N-isopropylacrylamide) (PNIPAM)/MXene-silver nanowires (AgNWs) (PMA) hydrogel whose biomimetic kinematics transcend trade-offs. This novel design deliberately emulated biological principles of osmotic-like actuation via PNIPAM phase transition, dynamic microchannel reconfiguration using a zinc oxide (ZnO) template, and ion-flux-inspired electron pathways through MXene-AgNWs networks interfaced with a zinc ion (Zn²⁺) electrolyte. Such structural ingenuity enables the simultaneous, on-demand tuning of electrical conductivity, hierarchical microarchitectures, and multifunctional properties. The resulting hydrogel exhibited a remarkable dynamic EMI shielding modulation of 61.1 dB, actuated solely through hydration-governed percolation. Crucially, the divergent stimulus responses imparted an intrinsic versatility that global electrothermal shrinkage to emulate stomatal closure for EMI shielding tunability, while localized photothermal bending reproduced guard-cell kinematics for soft actuators. Simultaneously, Zn2+-riveted cross-links endowed the hydrogel with exceptional mechanical toughness of 360.6 kJ m-3, while a wrinkle-nanobridge architecture integrated high-precision sensing, retaining a gauge factor (GF) of 2.11 across a 394% deformation window. Demonstrated in wireless communication toggling and muscle-movement monitoring, this biomimetic strategy establishes a paradigm for intelligent hydrogels, offering transformative potential for smart wearables and human-machine interfaces.
受气孔启发的智能高性能水凝胶,可按需屏蔽电磁干扰。
智能自适应电磁干扰(EMI)屏蔽材料的发展仍然受到动态可调性、机械鲁棒性和多功能集成之间固有权衡的限制。受植物保护细胞气孔调节的启发,该公司设计了一种智能聚n -异丙基丙烯酰胺(PNIPAM)/ mxene -银纳米线(AgNWs) (PMA)水凝胶,其仿生运动超越了权衡。这种新颖的设计通过PNIPAM相变,使用氧化锌(ZnO)模板的动态微通道重构,以及通过与锌离子(Zn 2 +)电解质界面的MXene-AgNWs网络的离子通量激发的电子路径,刻意模拟了渗透性驱动的生物学原理。这种精巧的结构使电导率、分层微结构和多功能特性能够同时按需调整。所得到的水凝胶表现出61.1 dB的显著动态EMI屏蔽调制,仅通过水化控制的渗透驱动。至关重要的是,不同的刺激响应赋予了一种内在的多功能性,即全局电热收缩模拟气孔关闭以实现电磁干扰屏蔽的可调性,而局部光热弯曲则再现了软执行器的保护细胞运动学。同时,Zn2+铆接交联使水凝胶具有360.6 kJ m-3的优异机械韧性,而褶皱纳米桥结构集成了高精度传感,在394%的变形窗口内保持了2.11的测量因子(GF)。在无线通信切换和肌肉运动监测中,这种仿生策略为智能水凝胶建立了一个范例,为智能可穿戴设备和人机界面提供了变革潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信