Mutsumi Katayama,Elena Caria,Dimitri Van Simaeys,Anna Yagüe Sanz,Romain Barrès,Kenneth Caidahl,Oscar Pb Wiklander,Samir El-Andaloussi,Per-Olof Berggren,Juleen R Zierath,Anna Krook
{"title":"Exercise training-induced extracellular miR-136-3p modulates glucose uptake and myogenesis through targeting of NRDC in human skeletal muscle.","authors":"Mutsumi Katayama,Elena Caria,Dimitri Van Simaeys,Anna Yagüe Sanz,Romain Barrès,Kenneth Caidahl,Oscar Pb Wiklander,Samir El-Andaloussi,Per-Olof Berggren,Juleen R Zierath,Anna Krook","doi":"10.1016/j.jshs.2025.101091","DOIUrl":null,"url":null,"abstract":"BACKGROUND\r\nRegular physical training induces adaptive effects across multiple organ systems, highlighting the existence of inter-organ communication networks. However, the molecular mechanisms underlying both exercise-induced adaptations and organ-to-organ signaling are not fully characterized. Circulating extracellular vesicles (EVs), including exosomes, carry molecules like microRNAs (miRNAs) that may mediate tissue crosstalk. This study aimed to identify specific exercise training-responsive miRNAs that affect skeletal muscle function.\r\n\r\nMETHODS\r\nmiRNA expression profiles of serum-derived EVs were analyzed in healthy young individuals before and after 3 weeks endurance exercise training. Exercise training-responsive miRNAs were then validated for a functional role in cellular metabolic processes in human myotubes.\r\n\r\nRESULTS\r\nWe identified several exercise training-responsive miRNAs within exosome-rich EVs in serum, including miR-136-3p. In human myotubes, miR-136-3p enhanced glucose uptake and targeted the nardilysin convertase (NRDC) gene. Transfection of miR-136-3p or silencing of NRDC induced a shift towards glycolytic metabolism in mitochondria and modulated gene expressions related to myogenesis. Pancreatic islets were identified as a potential source of miR-136-3p based on in silico analysis of gene expression and a molecular analysis of conditioned media from isolated pancreatic islets.\r\n\r\nCONCLUSION\r\nMiR-136-3p is an endurance training-responsive molecular transducer that modulates glucose metabolism and cellular proliferation in myocytes. Associated with EVs, extracellular miR-136-3p may serve as a molecular messenger to communicate islet-skeletal muscle crosstalk after exercise. Extracellular miR-136-3p may serve as a molecular messenger to communicate islet-skeletal muscle crosstalk. Our results highlight a miRNA-mediated mechanism that participates in inter-organ communication to fine tune the metabolic adaptations to exercise.","PeriodicalId":48897,"journal":{"name":"Journal of Sport and Health Science","volume":"21 1","pages":"101091"},"PeriodicalIF":10.3000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sport and Health Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jshs.2025.101091","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HOSPITALITY, LEISURE, SPORT & TOURISM","Score":null,"Total":0}
引用次数: 0
Abstract
BACKGROUND
Regular physical training induces adaptive effects across multiple organ systems, highlighting the existence of inter-organ communication networks. However, the molecular mechanisms underlying both exercise-induced adaptations and organ-to-organ signaling are not fully characterized. Circulating extracellular vesicles (EVs), including exosomes, carry molecules like microRNAs (miRNAs) that may mediate tissue crosstalk. This study aimed to identify specific exercise training-responsive miRNAs that affect skeletal muscle function.
METHODS
miRNA expression profiles of serum-derived EVs were analyzed in healthy young individuals before and after 3 weeks endurance exercise training. Exercise training-responsive miRNAs were then validated for a functional role in cellular metabolic processes in human myotubes.
RESULTS
We identified several exercise training-responsive miRNAs within exosome-rich EVs in serum, including miR-136-3p. In human myotubes, miR-136-3p enhanced glucose uptake and targeted the nardilysin convertase (NRDC) gene. Transfection of miR-136-3p or silencing of NRDC induced a shift towards glycolytic metabolism in mitochondria and modulated gene expressions related to myogenesis. Pancreatic islets were identified as a potential source of miR-136-3p based on in silico analysis of gene expression and a molecular analysis of conditioned media from isolated pancreatic islets.
CONCLUSION
MiR-136-3p is an endurance training-responsive molecular transducer that modulates glucose metabolism and cellular proliferation in myocytes. Associated with EVs, extracellular miR-136-3p may serve as a molecular messenger to communicate islet-skeletal muscle crosstalk after exercise. Extracellular miR-136-3p may serve as a molecular messenger to communicate islet-skeletal muscle crosstalk. Our results highlight a miRNA-mediated mechanism that participates in inter-organ communication to fine tune the metabolic adaptations to exercise.
期刊介绍:
The Journal of Sport and Health Science (JSHS) is an international, multidisciplinary journal that aims to advance the fields of sport, exercise, physical activity, and health sciences. Published by Elsevier B.V. on behalf of Shanghai University of Sport, JSHS is dedicated to promoting original and impactful research, as well as topical reviews, editorials, opinions, and commentary papers.
With a focus on physical and mental health, injury and disease prevention, traditional Chinese exercise, and human performance, JSHS offers a platform for scholars and researchers to share their findings and contribute to the advancement of these fields. Our journal is peer-reviewed, ensuring that all published works meet the highest academic standards.
Supported by a carefully selected international editorial board, JSHS upholds impeccable integrity and provides an efficient publication platform. We invite submissions from scholars and researchers worldwide, and we are committed to disseminating insightful and influential research in the field of sport and health science.