Synergistic Microstructure and Composition Engineering via Na2S Enables High-Performance Porous PbTe Thermoelectrics with Ultrahigh Device Power Density.

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shaoqing Lu,Zhengyi Zhu,Weite Meng,Jian Wang,Lulu Huang,Mengyao Li,Aziz Genç,Siqi Huo,Khak Ho Lim,Andreu Cabot,Yucheng Wu,Yu Zhang,Min Hong,Jian Yan,Yu Liu
{"title":"Synergistic Microstructure and Composition Engineering via Na2S Enables High-Performance Porous PbTe Thermoelectrics with Ultrahigh Device Power Density.","authors":"Shaoqing Lu,Zhengyi Zhu,Weite Meng,Jian Wang,Lulu Huang,Mengyao Li,Aziz Genç,Siqi Huo,Khak Ho Lim,Andreu Cabot,Yucheng Wu,Yu Zhang,Min Hong,Jian Yan,Yu Liu","doi":"10.1002/adma.202512589","DOIUrl":null,"url":null,"abstract":"Thermoelectric (TE) materials, capable of directly converting heat into electricity, offer a promising route for sustainable energy recovery. However, practical deployment is limited by the difficulty in simultaneously optimizing electrical and thermal transport properties. In this study, a synergistic microstructure-composition co-design strategy for enhancing the performance of PbTe-based TEs via Na2S-assisted solid-state synthesis is presented. The thermal decomposition of Na2S not only introduces hierarchical porosity but also facilitates initial Na doping, enabling the concurrent optimization of phonon scattering, carrier concentration, and band convergence. The optimized composition, Pb0.97Na0.03Te-1.0%Na2S, exhibits refined grains, dispersed Na2Te nanoprecipitates, and a high density of dislocations, leading to ultralow lattice thermal conductivity (≈0.50 W m-1 K-1 at 750 K) while preserving excellent electrical transport. A peak TE figure of merit zT≈2.2 at 823 K and a high average zT ≈1.9 across 623-823 K are achieved. To validate the device-level applicability, single-leg TE modules are fabricated, achieving a high conversion efficiency of 13.4% at ΔT = 395 K, which is among the best reported for a PbTe-based system. Furthermore, a unicouple module integrated with n-type skutterudite reaches a record power density of 2.2 W cm-2 at ΔT = 375 K. This study highlights a scalable pathway for advancing mid-temperature TE materials and devices through structural and compositional engineering.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"104 1","pages":"e12589"},"PeriodicalIF":26.8000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202512589","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Thermoelectric (TE) materials, capable of directly converting heat into electricity, offer a promising route for sustainable energy recovery. However, practical deployment is limited by the difficulty in simultaneously optimizing electrical and thermal transport properties. In this study, a synergistic microstructure-composition co-design strategy for enhancing the performance of PbTe-based TEs via Na2S-assisted solid-state synthesis is presented. The thermal decomposition of Na2S not only introduces hierarchical porosity but also facilitates initial Na doping, enabling the concurrent optimization of phonon scattering, carrier concentration, and band convergence. The optimized composition, Pb0.97Na0.03Te-1.0%Na2S, exhibits refined grains, dispersed Na2Te nanoprecipitates, and a high density of dislocations, leading to ultralow lattice thermal conductivity (≈0.50 W m-1 K-1 at 750 K) while preserving excellent electrical transport. A peak TE figure of merit zT≈2.2 at 823 K and a high average zT ≈1.9 across 623-823 K are achieved. To validate the device-level applicability, single-leg TE modules are fabricated, achieving a high conversion efficiency of 13.4% at ΔT = 395 K, which is among the best reported for a PbTe-based system. Furthermore, a unicouple module integrated with n-type skutterudite reaches a record power density of 2.2 W cm-2 at ΔT = 375 K. This study highlights a scalable pathway for advancing mid-temperature TE materials and devices through structural and compositional engineering.
通过Na2S的协同微结构和成分工程实现具有超高器件功率密度的高性能多孔PbTe热电材料。
热电(TE)材料能够直接将热转化为电,为可持续能源回收提供了一条有前途的途径。然而,由于难以同时优化电输运和热输运性质,实际应用受到了限制。在这项研究中,提出了一种通过na2s辅助固态合成提高pbte基TEs性能的协同微结构-成分协同设计策略。Na2S的热分解不仅引入了分层孔隙,而且促进了初始Na掺杂,使声子散射、载流子浓度和能带收敛同时得到优化。优化后的Pb0.97Na0.03Te-1.0%Na2S具有晶粒细、分散的Na2Te纳米沉淀物和高密度的位错,使得其晶格导热系数(750 K时≈0.50 W m-1 K-1)超低,同时保持了优异的电输运性能。在823 K处获得了zT≈2.2的峰值TE值,在623-823 K处获得了较高的平均zT≈1.9。为了验证器件级适用性,制作了单腿TE模块,在ΔT = 395 K时实现了13.4%的高转换效率,这是基于pbte的系统中报道的最佳转换效率之一。此外,在ΔT = 375 K时,集成了n型方钨矿的单偶模块达到了创纪录的2.2 W cm-2的功率密度。这项研究强调了通过结构和成分工程推进中温TE材料和器件的可扩展途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信