Permselective Covalent Organic Framework Membrane as Self‐Extinguishing Separator for High‐Safety Lithium‐Ion Battery

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xu Chen, Jinying Liu, Wenming Li, Chenyi You, Xinchen Zhu, Jie Wei, Zhiwei Fang, Hanjun Wang, Shuping Huang, Songyan Bai
{"title":"Permselective Covalent Organic Framework Membrane as Self‐Extinguishing Separator for High‐Safety Lithium‐Ion Battery","authors":"Xu Chen, Jinying Liu, Wenming Li, Chenyi You, Xinchen Zhu, Jie Wei, Zhiwei Fang, Hanjun Wang, Shuping Huang, Songyan Bai","doi":"10.1002/anie.202512591","DOIUrl":null,"url":null,"abstract":"As electric vehicles continue to gain popularity, the demand for high‐energy‐density battery technologies is growing rapidly. The separator, the most critical component in a battery, plays a key role in ensuring battery safety. However, uncontrolled ion transport and persistent safety concerns in promising lithium‐ion batteries (LIBs) still present significant challenges. In this study, we introduce a novel fluorine‐functionalized COF (TF‐COF) membrane as a battery separator to enhance the overall safety and cycling stability of LIBs. Its permselective nature effectively suppresses the growth of lithium dendrites and minimizes the risk of short circuit. When exposed to open flames, its excellent flame‐retardant properties allow it to self‐extinguish the fire up to three times, significantly prolonging the safe evacuation time when an accident occurs. Additionally, the intrinsic micropores of strongly lithophilic TF‐COF separator facilitate uniform lithium‐ion flux, enabling high values of ionic conductivity (8.79 × 10<jats:sup>−4</jats:sup> S cm<jats:sup>−1</jats:sup>) and Li⁺ transference number (<jats:italic>t</jats:italic><jats:sub>Li</jats:sub><jats:sup>₊</jats:sup>, 0.86). The NCM811||Li cell with TF‐COF separators demonstrated high‐capacity retention of 87.6% after 200 cycles at 4.5 V and 0.5 C. Our approach, leveraging the fire‐retardant capabilities of permselective COF separators, offers a promising new pathway toward developing high‐safety, high‐energy‐density battery technologies with long‐life cyclability.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"55 1","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202512591","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

As electric vehicles continue to gain popularity, the demand for high‐energy‐density battery technologies is growing rapidly. The separator, the most critical component in a battery, plays a key role in ensuring battery safety. However, uncontrolled ion transport and persistent safety concerns in promising lithium‐ion batteries (LIBs) still present significant challenges. In this study, we introduce a novel fluorine‐functionalized COF (TF‐COF) membrane as a battery separator to enhance the overall safety and cycling stability of LIBs. Its permselective nature effectively suppresses the growth of lithium dendrites and minimizes the risk of short circuit. When exposed to open flames, its excellent flame‐retardant properties allow it to self‐extinguish the fire up to three times, significantly prolonging the safe evacuation time when an accident occurs. Additionally, the intrinsic micropores of strongly lithophilic TF‐COF separator facilitate uniform lithium‐ion flux, enabling high values of ionic conductivity (8.79 × 10−4 S cm−1) and Li⁺ transference number (tLi, 0.86). The NCM811||Li cell with TF‐COF separators demonstrated high‐capacity retention of 87.6% after 200 cycles at 4.5 V and 0.5 C. Our approach, leveraging the fire‐retardant capabilities of permselective COF separators, offers a promising new pathway toward developing high‐safety, high‐energy‐density battery technologies with long‐life cyclability.
作为高安全锂离子电池自熄分离器的高选择性共价有机框架膜
随着电动汽车的不断普及,对高能量密度电池技术的需求也在迅速增长。隔膜是电池中最关键的部件,对保证电池的安全起着关键作用。然而,不受控制的离子传输和持续存在的安全问题仍然是有前途的锂离子电池(lib)面临的重大挑战。在这项研究中,我们引入了一种新型氟功能化COF (TF - COF)膜作为电池隔膜,以提高锂离子电池的整体安全性和循环稳定性。其超选择性能有效抑制锂枝晶的生长,将短路风险降至最低。当暴露在明火中时,其优异的阻燃性能使其能够自熄多达三倍的火焰,大大延长了事故发生时的安全疏散时间。此外,强亲石性TF - COF分离器的固有微孔促进了均匀的锂离子通量,实现了高离子电导率(8.79 × 10−4 S cm−1)和Li +的转移数(tLi₊,0.86)。采用TF - COF隔膜的NCM811||锂电池在4.5 V和0.5 c下循环200次后显示出87.6%的高容量保留率。我们的方法利用了超选择性COF隔膜的阻燃能力,为开发具有长寿命循环能力的高安全性、高能量密度电池技术提供了一条有希望的新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信