Eva M Lansu, Hallie S Fischman, Christine Angelini, Nadia Hijner, Luc Geelen, Dick Groenendijk, Solveig Höfer, Annemieke M Kooijman, Max Rietkerk, Sten Tonkens, Sierd de Vries, Martin Wassen, Evaline van Weerlee, Daniël Wille, Valérie Reijers, Tjisse van der Heide
{"title":"How human infrastructure threatens biodiversity by squeezing sandy coasts.","authors":"Eva M Lansu, Hallie S Fischman, Christine Angelini, Nadia Hijner, Luc Geelen, Dick Groenendijk, Solveig Höfer, Annemieke M Kooijman, Max Rietkerk, Sten Tonkens, Sierd de Vries, Martin Wassen, Evaline van Weerlee, Daniël Wille, Valérie Reijers, Tjisse van der Heide","doi":"10.1016/j.cub.2025.09.027","DOIUrl":null,"url":null,"abstract":"<p><p>Coastal dunes form valuable ecosystems that provide flood protection, drinking water, and high biodiversity worldwide. Although their functioning hinges on habitat zonation along >km-scale sea-to-land gradients, infrastructure development progressively squeezes natural dune ecosystems into a narrow strip. Yet it remains unknown how much undisturbed coastal width is required to support the diverse suites of habitats and species assemblages found in natural dune systems. Here, we investigate plant and habitat diversity in 614 plots along 47 sea-to-land transects in the southeastern USA and the Netherlands. We discover a linear relation between habitat diversity and species richness, indicating that species-rich dunes require diverse habitat assemblages. Moreover, we find that both plant and habitat diversity nonlinearly depend on coastal width, with cumulative plant diversity reaching ∼75% of its potential at 800 and 1,800 m widths in the southeastern USA and the Netherlands, respectively. Alarmingly, dune areas are narrower than these widths along 79% and 66% of southeastern USA and Dutch coastlines, highlighting that lack of space compromises biodiversity along the majority of coastlines. Finally, analyses of management measures along the transects reveal that strategic interventions can, at least in part, mitigate biodiversity losses from infrastructure encroachment. As coastal squeeze-i.e., combined losses from infrastructure and sea level rise-is a global phenomenon, our results suggest that it threatens biodiversity in dune ecosystems worldwide. We argue that the establishment or expansion of nature reserves may be vital for conserving wide dune systems and that targeted management measures can help maintain biodiversity where squeeze cannot be alleviated.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2025.09.027","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Coastal dunes form valuable ecosystems that provide flood protection, drinking water, and high biodiversity worldwide. Although their functioning hinges on habitat zonation along >km-scale sea-to-land gradients, infrastructure development progressively squeezes natural dune ecosystems into a narrow strip. Yet it remains unknown how much undisturbed coastal width is required to support the diverse suites of habitats and species assemblages found in natural dune systems. Here, we investigate plant and habitat diversity in 614 plots along 47 sea-to-land transects in the southeastern USA and the Netherlands. We discover a linear relation between habitat diversity and species richness, indicating that species-rich dunes require diverse habitat assemblages. Moreover, we find that both plant and habitat diversity nonlinearly depend on coastal width, with cumulative plant diversity reaching ∼75% of its potential at 800 and 1,800 m widths in the southeastern USA and the Netherlands, respectively. Alarmingly, dune areas are narrower than these widths along 79% and 66% of southeastern USA and Dutch coastlines, highlighting that lack of space compromises biodiversity along the majority of coastlines. Finally, analyses of management measures along the transects reveal that strategic interventions can, at least in part, mitigate biodiversity losses from infrastructure encroachment. As coastal squeeze-i.e., combined losses from infrastructure and sea level rise-is a global phenomenon, our results suggest that it threatens biodiversity in dune ecosystems worldwide. We argue that the establishment or expansion of nature reserves may be vital for conserving wide dune systems and that targeted management measures can help maintain biodiversity where squeeze cannot be alleviated.
期刊介绍:
Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.