{"title":"The metabolic landscape of tomato roots during arbuscular mycorrhizal symbiosis reveals lipid-related metabolic rewiring.","authors":"Qian Ding, Xiang-Yun Tian, Wen-Shen Wu, Feng-Jia Yu, Zhu-Qing Shao, Zhen Zeng","doi":"10.1007/s00299-025-03621-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>This study reveals lipid-related metabolic rewiring in tomato roots during arbuscular mycorrhizal symbiosis, identifying potential candidate lipids for fungal carbon transfer and signaling. Arbuscular mycorrhizal (AM) symbiosis induces substantial metabolic rearrangement in host plants to facilitate nutrient exchange and symbiotic efficiency. While previous metabolomic studies have characterized metabolite shifts in AM symbiosis, the lipid-related metabolic rewiring underlying nutrient exchange in host plant roots remains poorly resolved. Here, we investigated the metabolic response in tomato roots colonized by AM fungi. A total of 219 differentially accumulated metabolites (DAMs) were identified by the ultra-high-performance liquid chromatography-tandem mass spectrometry analysis, with lipids and lipid-like molecules representing the predominant classes. The most significantly upregulated metabolite was 2-(14,15-epoxyeicosatrienoyl) glycerol, a 2-monoacylglycerols (2-MAGs) mapped to arachidonic acid metabolism. This compound represents a C20-based epoxy fatty acid-derived 2-MAG, distinct from the C16:0 2-MAG induced by AM symbiosis in legumes, thereby implying the possibility of transferring diverse lipid substrates from different host plants to AM fungi. Concurrently, enhanced accumulation of dihomo-γ-linolenic acid (DGLA) and arachidonic acid (ARA) in AM fungi colonized roots underscored alterations of arachidonic acid metabolism and unsaturated fatty acid pathway. Gene set enrichment analysis based on the transcriptome data revealed significant transition of the glycerophospholipid metabolism pathway, primarily driven by multiple lysophosphatidylcholine (LPC) species that showed significant upregulation. Integrated transcriptomic and metabolomic analysis identified 31 overlapping KEGG pathways, emphasizing the importance of lipid and amino acid metabolism. In summary, our integrated analysis demonstrates that lipid-related metabolic reprogramming, represented by the induction of 2-MAGs and LPCs, is a feature of AM symbiosis that enables cross-kingdom nutrient exchange and host metabolic adaptation.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 10","pages":"230"},"PeriodicalIF":4.5000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-025-03621-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Key message: This study reveals lipid-related metabolic rewiring in tomato roots during arbuscular mycorrhizal symbiosis, identifying potential candidate lipids for fungal carbon transfer and signaling. Arbuscular mycorrhizal (AM) symbiosis induces substantial metabolic rearrangement in host plants to facilitate nutrient exchange and symbiotic efficiency. While previous metabolomic studies have characterized metabolite shifts in AM symbiosis, the lipid-related metabolic rewiring underlying nutrient exchange in host plant roots remains poorly resolved. Here, we investigated the metabolic response in tomato roots colonized by AM fungi. A total of 219 differentially accumulated metabolites (DAMs) were identified by the ultra-high-performance liquid chromatography-tandem mass spectrometry analysis, with lipids and lipid-like molecules representing the predominant classes. The most significantly upregulated metabolite was 2-(14,15-epoxyeicosatrienoyl) glycerol, a 2-monoacylglycerols (2-MAGs) mapped to arachidonic acid metabolism. This compound represents a C20-based epoxy fatty acid-derived 2-MAG, distinct from the C16:0 2-MAG induced by AM symbiosis in legumes, thereby implying the possibility of transferring diverse lipid substrates from different host plants to AM fungi. Concurrently, enhanced accumulation of dihomo-γ-linolenic acid (DGLA) and arachidonic acid (ARA) in AM fungi colonized roots underscored alterations of arachidonic acid metabolism and unsaturated fatty acid pathway. Gene set enrichment analysis based on the transcriptome data revealed significant transition of the glycerophospholipid metabolism pathway, primarily driven by multiple lysophosphatidylcholine (LPC) species that showed significant upregulation. Integrated transcriptomic and metabolomic analysis identified 31 overlapping KEGG pathways, emphasizing the importance of lipid and amino acid metabolism. In summary, our integrated analysis demonstrates that lipid-related metabolic reprogramming, represented by the induction of 2-MAGs and LPCs, is a feature of AM symbiosis that enables cross-kingdom nutrient exchange and host metabolic adaptation.
期刊介绍:
Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as:
- genomics and genetics
- metabolism
- cell biology
- abiotic and biotic stress
- phytopathology
- gene transfer and expression
- molecular pharming
- systems biology
- nanobiotechnology
- genome editing
- phenomics and synthetic biology
The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.