Byoung-Mo Koo, Horia Todor, Jiawei Sun, Jordi van Gestel, John S Hawkins, Cameron C Hearne, Amy B Banta, Kerwyn Casey Huang, Jason M Peters, Carol A Gross
{"title":"Comprehensive genetic interaction analysis of the Bacillus subtilis envelope using double-CRISPRi.","authors":"Byoung-Mo Koo, Horia Todor, Jiawei Sun, Jordi van Gestel, John S Hawkins, Cameron C Hearne, Amy B Banta, Kerwyn Casey Huang, Jason M Peters, Carol A Gross","doi":"10.1016/j.cels.2025.101406","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding bacterial gene function remains a major challenge. Double-mutant genetic interaction analysis addresses this challenge by uncovering the functional partners of targeted genes, enabling association of genes of unknown function with known pathways and unraveling of connections among well-studied pathways, but such approaches are difficult to implement at the genome scale. Here, we use double-CRISPR interference (CRISPRi) to systematically quantify genetic interactions at scale for the Bacillus subtilis cell envelope, including essential genes. We discover >1,000 genetic interactions, some known and others novel. Our analysis pipeline and experimental follow-ups reveal the shared and distinct roles of paralogous genes such as mreB and mbl in peptidoglycan and teichoic acid synthesis and identify additional genes involved in the well-studied process of cell division. Overall, our study provides valuable insights into gene function and demonstrates the utility of double-CRISPRi for high-throughput dissection of bacterial gene networks, providing a blueprint for future studies in diverse species. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101406"},"PeriodicalIF":7.7000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding bacterial gene function remains a major challenge. Double-mutant genetic interaction analysis addresses this challenge by uncovering the functional partners of targeted genes, enabling association of genes of unknown function with known pathways and unraveling of connections among well-studied pathways, but such approaches are difficult to implement at the genome scale. Here, we use double-CRISPR interference (CRISPRi) to systematically quantify genetic interactions at scale for the Bacillus subtilis cell envelope, including essential genes. We discover >1,000 genetic interactions, some known and others novel. Our analysis pipeline and experimental follow-ups reveal the shared and distinct roles of paralogous genes such as mreB and mbl in peptidoglycan and teichoic acid synthesis and identify additional genes involved in the well-studied process of cell division. Overall, our study provides valuable insights into gene function and demonstrates the utility of double-CRISPRi for high-throughput dissection of bacterial gene networks, providing a blueprint for future studies in diverse species. A record of this paper's transparent peer review process is included in the supplemental information.