Nicholas Corson-Dosch, Faith Fitzpatrick, Paul Juckem, Jim Blount, Wonsook Ha
{"title":"Assessing Flood Water Infiltration and Storage in a Restored Floodplain","authors":"Nicholas Corson-Dosch, Faith Fitzpatrick, Paul Juckem, Jim Blount, Wonsook Ha","doi":"10.1002/hyp.70281","DOIUrl":null,"url":null,"abstract":"<p>In urban areas, floodplain restoration is gaining prominence as a strategy for restoring the natural functions of floodplain ecosystems and reducing flood risk. This has spurred research into potential interactions between floodwaters, the hyporheic zone, and the floodplain aquifer. An urban restored stream in Wisconsin, USA, was used as a case study to examine four methods to estimate floodplain infiltration and storage during overbank floods. We characterised flood-related infiltration over a 4-year period from 2018 through 2021 by simultaneously and continuously measuring groundwater levels and vertical temperature profiles with stream water levels linked to high-resolution flood inundation maps. High-resolution topographic data helped to quantify surface floodplain storage and the unsaturated soil volume relative to flood stage. Infiltration estimates from the simple methods align well with those from the more complex methods; however, the complex methods provide additional insights about the factors influencing infiltration. Results from all methods indicate that the volume of water that vertically infiltrates during floods is likely small relative to the total volume of the flood, with 0.08%–0.52% of flood water infiltrating into the floodplain, on average. Spatially variable vertical hydraulic gradients, driven by flood depth, groundwater level, and permeability, imply heterogeneous patterns of infiltration across the floodplain. Gradients favourable for infiltration typically occurred during the onset of flooding but, over the study period, were mostly (98% of the time) favourable for groundwater discharge to the channel (non-flood periods). These findings highlight the importance of considering surface-groundwater dynamics, floodplain soils, and unsaturated floodplain volume in defining the benefits of floodplain infiltration for flood attenuation.</p>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"39 10","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hyp.70281","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Processes","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hyp.70281","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
In urban areas, floodplain restoration is gaining prominence as a strategy for restoring the natural functions of floodplain ecosystems and reducing flood risk. This has spurred research into potential interactions between floodwaters, the hyporheic zone, and the floodplain aquifer. An urban restored stream in Wisconsin, USA, was used as a case study to examine four methods to estimate floodplain infiltration and storage during overbank floods. We characterised flood-related infiltration over a 4-year period from 2018 through 2021 by simultaneously and continuously measuring groundwater levels and vertical temperature profiles with stream water levels linked to high-resolution flood inundation maps. High-resolution topographic data helped to quantify surface floodplain storage and the unsaturated soil volume relative to flood stage. Infiltration estimates from the simple methods align well with those from the more complex methods; however, the complex methods provide additional insights about the factors influencing infiltration. Results from all methods indicate that the volume of water that vertically infiltrates during floods is likely small relative to the total volume of the flood, with 0.08%–0.52% of flood water infiltrating into the floodplain, on average. Spatially variable vertical hydraulic gradients, driven by flood depth, groundwater level, and permeability, imply heterogeneous patterns of infiltration across the floodplain. Gradients favourable for infiltration typically occurred during the onset of flooding but, over the study period, were mostly (98% of the time) favourable for groundwater discharge to the channel (non-flood periods). These findings highlight the importance of considering surface-groundwater dynamics, floodplain soils, and unsaturated floodplain volume in defining the benefits of floodplain infiltration for flood attenuation.
期刊介绍:
Hydrological Processes is an international journal that publishes original scientific papers advancing understanding of the mechanisms underlying the movement and storage of water in the environment, and the interaction of water with geological, biogeochemical, atmospheric and ecological systems. Not all papers related to water resources are appropriate for submission to this journal; rather we seek papers that clearly articulate the role(s) of hydrological processes.