{"title":"Structures and Bonding of Lanthanide-Doped Endohedral Borospherenes Ln@B400/+ (Ln = Ce, Pr, Nd, Pm, Sm, Eu, Gd)","authors":"Xiao-Ni Zhao, Ting Zhang, Xiao-Qin Lu, Si-Dian Li","doi":"10.1007/s10876-025-02908-w","DOIUrl":null,"url":null,"abstract":"<div><p>Metal-doped endohedral borospherenes M@B<sub>40</sub> have attracted considerable attention since the discovery of the first boroshphenes B<sub>40</sub><sup>−/0</sup> in 2014. Systematical density functional theory investigations performed herein unveil the ground-state structures and coordination bonding patterns of a series of lanthanide-doped endohedral borospherenes Ln@B<sub>40</sub><sup>0/+</sup>, including the doublet <i>C</i><sub>2<i>v</i></sub> Ce@B<sub>40</sub><sup>+</sup> (<b>1</b>, <sup>2</sup>B<sub>1</sub>), triplet <i>C</i><sub>2<i>v</i></sub> Ce@B<sub>40</sub> (<b>2</b>, <sup>3</sup>A<sub>2</sub>), quartet <i>C</i><sub>2<i>v</i></sub> Pr@B<sub>40</sub> (<b>3</b>, <sup>4</sup>B<sub>1</sub>), quintet <i>C</i><sub>2<i>v</i></sub> Nd@B<sub>40</sub> (<b>4</b>, <sup>5</sup>A<sub>1</sub>), sextet <i>C</i><sub>2</sub> Pm@B<sub>40</sub> (<b>5</b>, <sup>6</sup>A), septet <i>C</i><sub>2<i>v</i></sub> Sm@B<sub>40</sub> (<b>6</b>, <sup>7</sup>A<sub>2</sub>), octet <i>D</i><sub>2<i>d</i></sub> Eu@B<sub>40</sub> (<b>7</b>, <sup>8</sup>B<sub>1</sub>), and octet <i>C</i><sub>2<i>v</i></sub> Gd@B<sub>40</sub><sup>+</sup> (<b>8</b>, <sup>8</sup>A<sub>2</sub>). Detailed principal interaction spin orbital (PISO) and adaptive natural density partitioning (AdNDP) bonding pattern analyses indicate that, with the number of unpaired α-electrons changing from n<sub>α</sub> = 1, 2, 3, 4, 5, 6, 7, to 7 in the series, their coordination bonding energies decrease monotonically from <i>E</i><sub>c</sub> = 7.22, 6.93, 5.67, 4.85, 4.67, 4.29, 4.02, to 2.07 eV, respectively, with the dominating percentage contributions of the Ln 5d-involved PISOs to the overall <i>E</i><sub>c</sub> increasing almost monotonically from 66 to 83%, while the minor contributions of the Ln 4f-involved PISOs varying between 0.3% and 12.1% and that of Ln 6s-involved PISO pairs remaining basically unchanged in a narrow range between 6% and 8%. In average, the dominating 5d-invloved PISOs in Ln@B<sub>40</sub> contribute about 72.8% to the overall <i>E</i><sub>c</sub>, 19.3% higher than that (53.4%) of the 6d-involved PISOs in the newly reported actinide-doped An@B<sub>40</sub><sup>+/0/−</sup>, while the minor 4f-involved PISOs in Ln@B<sub>40</sub> contribute about 6.1% to <i>E</i><sub>c</sub>, 15.7% lower than that (21.8%) of the 5f-invloved PISOs in An@B<sub>40</sub><sup>+/0/−</sup>, quantitatively unveiling the differences in coordination bonding patterns between Ln@B<sub>40</sub><sup>+/0</sup> and An@B<sub>40</sub><sup>+/0/−</sup>.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 6","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-025-02908-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Metal-doped endohedral borospherenes M@B40 have attracted considerable attention since the discovery of the first boroshphenes B40−/0 in 2014. Systematical density functional theory investigations performed herein unveil the ground-state structures and coordination bonding patterns of a series of lanthanide-doped endohedral borospherenes Ln@B400/+, including the doublet C2v Ce@B40+ (1, 2B1), triplet C2v Ce@B40 (2, 3A2), quartet C2v Pr@B40 (3, 4B1), quintet C2v Nd@B40 (4, 5A1), sextet C2 Pm@B40 (5, 6A), septet C2v Sm@B40 (6, 7A2), octet D2d Eu@B40 (7, 8B1), and octet C2v Gd@B40+ (8, 8A2). Detailed principal interaction spin orbital (PISO) and adaptive natural density partitioning (AdNDP) bonding pattern analyses indicate that, with the number of unpaired α-electrons changing from nα = 1, 2, 3, 4, 5, 6, 7, to 7 in the series, their coordination bonding energies decrease monotonically from Ec = 7.22, 6.93, 5.67, 4.85, 4.67, 4.29, 4.02, to 2.07 eV, respectively, with the dominating percentage contributions of the Ln 5d-involved PISOs to the overall Ec increasing almost monotonically from 66 to 83%, while the minor contributions of the Ln 4f-involved PISOs varying between 0.3% and 12.1% and that of Ln 6s-involved PISO pairs remaining basically unchanged in a narrow range between 6% and 8%. In average, the dominating 5d-invloved PISOs in Ln@B40 contribute about 72.8% to the overall Ec, 19.3% higher than that (53.4%) of the 6d-involved PISOs in the newly reported actinide-doped An@B40+/0/−, while the minor 4f-involved PISOs in Ln@B40 contribute about 6.1% to Ec, 15.7% lower than that (21.8%) of the 5f-invloved PISOs in An@B40+/0/−, quantitatively unveiling the differences in coordination bonding patterns between Ln@B40+/0 and An@B40+/0/−.
期刊介绍:
The journal publishes the following types of papers: (a) original and important research;
(b) authoritative comprehensive reviews or short overviews of topics of current
interest; (c) brief but urgent communications on new significant research; and (d)
commentaries intended to foster the exchange of innovative or provocative ideas, and
to encourage dialogue, amongst researchers working in different cluster
disciplines.