Tuning the magnetic ground state of CuCrO2 by Ge substitution

IF 2.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Phantira Rattanathrum , Teerasak Kamwanna
{"title":"Tuning the magnetic ground state of CuCrO2 by Ge substitution","authors":"Phantira Rattanathrum ,&nbsp;Teerasak Kamwanna","doi":"10.1016/j.matlet.2025.139574","DOIUrl":null,"url":null,"abstract":"<div><div>Polycrystalline CuCr<sub>0.95</sub>Ge<sub>0.05</sub>O<sub>2</sub> was synthesized by a conventional solid-state reaction. X-ray diffraction confirmed the rhombohedral delafossite structure (R–3m). The refined lattice parameters are nearly identical to standard values, indicating Ge incorporation with minor distortion. Scanning electron microscopy (SEM) revealed hexagonal-like grains averaging of 3.6 ± 0.9 μm. Magnetic characterization showed weak ferromagnetism at low temperatures and paramagnetism at room temperature. Zero-field-cooled susceptibility identified a Curie temperature (<em>T</em><sub>C</sub>) of 139.3 ± 0.4 K, and Curie–Weiss fitting yielded a Curie constant (<em>C</em> = 1.425 ± 0.002), a Curie–Weiss temperature (Θ = −138.8 ± 0.4 K), and an effective magnetic moment (<em>μ</em><sub>eff</sub> = 3.37 μ<sub>B</sub>), consistent with the Cr<sup>3+</sup> sublattice. Additional field-dependent magnetization (<em>M</em>–<em>H</em>) loops near <em>T</em><sub>C</sub> revealed hysteresis in the 110–135 K range, with coercivity decreasing nearly linearly with temperature. Extrapolation yielded <em>T</em><sub>C</sub> = 139.8 ± 3.6 K, consistent with susceptibility results. These findings demonstrate that Ge substitution preserves the delafossite structure of CuCrO<sub>2</sub> while inducing weak ferromagnetic ordering, offering a route to tune the magnetic ground state.</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":"404 ","pages":"Article 139574"},"PeriodicalIF":2.7000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X25016040","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polycrystalline CuCr0.95Ge0.05O2 was synthesized by a conventional solid-state reaction. X-ray diffraction confirmed the rhombohedral delafossite structure (R–3m). The refined lattice parameters are nearly identical to standard values, indicating Ge incorporation with minor distortion. Scanning electron microscopy (SEM) revealed hexagonal-like grains averaging of 3.6 ± 0.9 μm. Magnetic characterization showed weak ferromagnetism at low temperatures and paramagnetism at room temperature. Zero-field-cooled susceptibility identified a Curie temperature (TC) of 139.3 ± 0.4 K, and Curie–Weiss fitting yielded a Curie constant (C = 1.425 ± 0.002), a Curie–Weiss temperature (Θ = −138.8 ± 0.4 K), and an effective magnetic moment (μeff = 3.37 μB), consistent with the Cr3+ sublattice. Additional field-dependent magnetization (MH) loops near TC revealed hysteresis in the 110–135 K range, with coercivity decreasing nearly linearly with temperature. Extrapolation yielded TC = 139.8 ± 3.6 K, consistent with susceptibility results. These findings demonstrate that Ge substitution preserves the delafossite structure of CuCrO2 while inducing weak ferromagnetic ordering, offering a route to tune the magnetic ground state.
用Ge取代调整CuCrO2的磁性基态
采用常规固相反应合成了多晶CuCr0.95Ge0.05O2。x射线衍射证实其为菱形拖岩结构(R-3m)。改进后的晶格参数与标准值几乎相同,表明Ge掺入畸变较小。扫描电镜(SEM)显示晶粒为六边形,平均尺寸为3.6±0.9 μm。磁性表征为低温弱铁磁性,室温顺磁性。零场冷却磁化率测得居里温度(TC)为139.3±0.4 K,居里常数(C = 1.425±0.002)、居里-魏斯温度(Θ =−138.8±0.4 K)和有效磁矩(μeff = 3.37 μB)与Cr3+亚晶格一致。TC附近附加的场相关磁化(M-H)环在110 ~ 135 K范围内呈现迟滞,矫顽力随温度近似线性下降。外推得到TC = 139.8±3.6 K,与敏感性结果一致。这些发现表明,Ge取代保留了CuCrO2的沉积结构,同时诱导了弱铁磁有序,为调节磁基态提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Letters
Materials Letters 工程技术-材料科学:综合
CiteScore
5.60
自引率
3.30%
发文量
1948
审稿时长
50 days
期刊介绍: Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials. Contributions include, but are not limited to, a variety of topics such as: • Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors • Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart • Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction • Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots. • Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing. • Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic • Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信