Matrix extension of the Kuralay-II Equation and its associated Darboux transformation

IF 2.5 3区 物理与天体物理 Q2 ACOUSTICS
Wen-Xiu Ma
{"title":"Matrix extension of the Kuralay-II Equation and its associated Darboux transformation","authors":"Wen-Xiu Ma","doi":"10.1016/j.wavemoti.2025.103644","DOIUrl":null,"url":null,"abstract":"<div><div>Starting from the matrix AKNS spectral problem, we construct a Lax pair featuring a first-order non-zero pole in the spectral parameter and derive a matrix generalization of the Kuralay-II equation. The associated Darboux transformation is developed within the AKNS framework. By applying this transformation to a non-zero seed solution, we obtain a class of exact and explicit solutions.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"140 ","pages":"Article 103644"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212525001556","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Starting from the matrix AKNS spectral problem, we construct a Lax pair featuring a first-order non-zero pole in the spectral parameter and derive a matrix generalization of the Kuralay-II equation. The associated Darboux transformation is developed within the AKNS framework. By applying this transformation to a non-zero seed solution, we obtain a class of exact and explicit solutions.
Kuralay-II方程的矩阵扩展及其相关的达布变换
从矩阵AKNS谱问题出发,构造了一个谱参数具有一阶非零极点的Lax对,并对Kuralay-II方程进行了矩阵推广。相关的达布变换是在AKNS框架内开发的。将此变换应用于非零种子解,得到了一类精确显式解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信