Vortex-cavity interactions in ventilated underwater launches with lateral velocity and waves

IF 5.5 2区 工程技术 Q1 ENGINEERING, CIVIL
Housheng Zhang (张后胜) , Yijie Zhang (张毅杰) , Zichao Shao (邵籽超) , Biao Huang (黄彪) , Xin Zhao (赵欣)
{"title":"Vortex-cavity interactions in ventilated underwater launches with lateral velocity and waves","authors":"Housheng Zhang (张后胜) ,&nbsp;Yijie Zhang (张毅杰) ,&nbsp;Zichao Shao (邵籽超) ,&nbsp;Biao Huang (黄彪) ,&nbsp;Xin Zhao (赵欣)","doi":"10.1016/j.oceaneng.2025.122967","DOIUrl":null,"url":null,"abstract":"<div><div>Ventilated cavitation is widely used for drag-reduction and stability-enhancement in underwater vehicles. This study presents a numerical investigation of ventilated cavitation during the underwater launch process, accounting for effects of lateral velocity and surface waves. The fluid-structure interaction is resolved using the Boundary Data Immersion Method, and the gas-liquid interface is captured with a Volume of Fluid scheme. Validation against underwater launch experiments and vertical water-tunnel tests confirms the accuracy of predicted cavity evolution and vehicle motion. The shoulder-attached cavity evolves in two distinct stages: pre- and post-ventilation. After ventilation onset, the reduced velocity difference across the cavity suppresses Kelvin–Helmholtz instability, leading to a stabilized interface. Transition from external to internal vortical structures further enhances cavity stability. Under the present lateral velocity conditions, lateral motion breaks flow symmetry: under no lateral velocity, periodic vortex merging induces large-scale shedding and load fluctuations; conversely, lateral motion promotes continuous small-scale shedding on the downstream side, preventing energy accumulation and suppressing large-scale oscillations. These findings reveal the role of vortex-cavity interactions in governing hydrodynamic stability during asymmetric launches.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"342 ","pages":"Article 122967"},"PeriodicalIF":5.5000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029801825026502","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Ventilated cavitation is widely used for drag-reduction and stability-enhancement in underwater vehicles. This study presents a numerical investigation of ventilated cavitation during the underwater launch process, accounting for effects of lateral velocity and surface waves. The fluid-structure interaction is resolved using the Boundary Data Immersion Method, and the gas-liquid interface is captured with a Volume of Fluid scheme. Validation against underwater launch experiments and vertical water-tunnel tests confirms the accuracy of predicted cavity evolution and vehicle motion. The shoulder-attached cavity evolves in two distinct stages: pre- and post-ventilation. After ventilation onset, the reduced velocity difference across the cavity suppresses Kelvin–Helmholtz instability, leading to a stabilized interface. Transition from external to internal vortical structures further enhances cavity stability. Under the present lateral velocity conditions, lateral motion breaks flow symmetry: under no lateral velocity, periodic vortex merging induces large-scale shedding and load fluctuations; conversely, lateral motion promotes continuous small-scale shedding on the downstream side, preventing energy accumulation and suppressing large-scale oscillations. These findings reveal the role of vortex-cavity interactions in governing hydrodynamic stability during asymmetric launches.
具有横向速度和波浪的通气水下发射中的涡腔相互作用
通风空化在水下航行器减阻增稳方面得到了广泛的应用。考虑横向速度和表面波的影响,对水下发射过程中的通气空化现象进行了数值研究。采用边界数据浸入法求解流固耦合,采用流体体积法捕获气液界面。水下发射试验和垂直水洞试验验证了预测空腔演化和飞行器运动的准确性。肩附腔的发展分为两个不同的阶段:通气前和通气后。通风开始后,腔内速度差的减小抑制了开尔文-亥姆霍兹不稳定性,导致界面稳定。从外部到内部的旋涡结构的过渡进一步提高了空腔的稳定性。在现有横向速度条件下,横向运动打破了流动对称;在无横向速度条件下,周期性涡合并引起大规模脱落和载荷波动;相反,横向运动促进下游连续的小尺度脱落,阻止能量积累,抑制大尺度振荡。这些发现揭示了涡腔相互作用在非对称发射过程中控制水动力稳定性的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ocean Engineering
Ocean Engineering 工程技术-工程:大洋
CiteScore
7.30
自引率
34.00%
发文量
2379
审稿时长
8.1 months
期刊介绍: Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信