Approximate Turing kernelization for problems parameterized by treewidth

IF 0.9 3区 计算机科学 Q1 BUSINESS, FINANCE
Eva-Maria C. Hols , Stefan Kratsch, Astrid Pieterse
{"title":"Approximate Turing kernelization for problems parameterized by treewidth","authors":"Eva-Maria C. Hols ,&nbsp;Stefan Kratsch,&nbsp;Astrid Pieterse","doi":"10.1016/j.jcss.2025.103720","DOIUrl":null,"url":null,"abstract":"<div><div>We extend the notion of lossy kernelization, introduced by Lokshtanov et al. (2017) <span><span>[19]</span></span>, to approximate Turing kernelization. An <em>α</em>-approximate Turing kernelization for a parameterized optimization problem is a polynomial-time algorithm that, when given access to an oracle that outputs <em>c</em>-approximate solutions in <span><math><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> time, computes an <span><math><mi>α</mi><mo>⋅</mo><mi>c</mi></math></span>-approximate solution to the considered problem, using calls to the oracle of size at most <span><math><mi>f</mi><mo>(</mo><mi>k</mi><mo>)</mo></math></span> for some function <em>f</em> that only depends on the parameter. Using this definition, we show that <span>Independent Set</span> parameterized by treewidth <em>ℓ</em> has a <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo>)</mo></math></span>-approximate Turing kernelization with <span><math><mi>O</mi><mo>(</mo><mfrac><mrow><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mi>ε</mi></mrow></mfrac><mo>)</mo></math></span> vertices, answering an open question posed by Lokshtanov et al. (2017) <span><span>[19]</span></span>. Furthermore, we give <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo>)</mo></math></span>-approximate Turing kernelizations for the following graph problems parameterized by treewidth: <span>Vertex Cover</span>, <span>Edge Clique Cover</span>, <span>Edge-Disjoint Triangle Packing</span>, and <span>Connected Vertex Cover</span>. We generalize the result for <span>Independent Set</span> and <span>Vertex Cover</span> by showing that all graph problems that we will call <em>friendly</em> admit <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo>)</mo></math></span>-approximate Turing kernelizations of polynomial size when parameterized by treewidth. We use this to establish approximate Turing kernelizations for <span>Vertex-Disjoint</span> <em>H</em><span>-packing</span> for connected graphs <em>H</em>, <span>Clique Cover</span>, <span>Feedback Vertex Set</span>, and <span>Edge Dominating Set</span>.</div></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"156 ","pages":"Article 103720"},"PeriodicalIF":0.9000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000025001023","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

We extend the notion of lossy kernelization, introduced by Lokshtanov et al. (2017) [19], to approximate Turing kernelization. An α-approximate Turing kernelization for a parameterized optimization problem is a polynomial-time algorithm that, when given access to an oracle that outputs c-approximate solutions in O(1) time, computes an αc-approximate solution to the considered problem, using calls to the oracle of size at most f(k) for some function f that only depends on the parameter. Using this definition, we show that Independent Set parameterized by treewidth has a (1+ε)-approximate Turing kernelization with O(2ε) vertices, answering an open question posed by Lokshtanov et al. (2017) [19]. Furthermore, we give (1+ε)-approximate Turing kernelizations for the following graph problems parameterized by treewidth: Vertex Cover, Edge Clique Cover, Edge-Disjoint Triangle Packing, and Connected Vertex Cover. We generalize the result for Independent Set and Vertex Cover by showing that all graph problems that we will call friendly admit (1+ε)-approximate Turing kernelizations of polynomial size when parameterized by treewidth. We use this to establish approximate Turing kernelizations for Vertex-Disjoint H-packing for connected graphs H, Clique Cover, Feedback Vertex Set, and Edge Dominating Set.
树宽度参数化问题的近似图灵核化
我们扩展了Lokshtanov等人(2017)[19]引入的有损核化概念,以近似图灵核化。参数化优化问题的α-近似图灵核化是一种多项式时间算法,当给定一个在O(1)时间内输出c个近似解的神谕时,对只依赖于参数的函数f调用最大为f(k)的神谕,计算所考虑问题的α⋅c-近似解。利用这一定义,我们证明了由树宽(treewidth)参数化的独立集具有O(l2ε)个顶点的(1+ε)-近似图灵核化,回答了Lokshtanov等人(2017)[19]提出的一个开放问题。进一步,我们给出了以下由树宽度参数化的图问题的(1+ε)-近似图灵核化:顶点覆盖、边团覆盖、边不相交三角形填充和连通顶点覆盖。我们推广了独立集和顶点覆盖的结果,表明当用树宽参数化时,所有我们称之为友好的图问题都承认(1+ε)-多项式大小的近似图灵核化。我们用这个方法建立了连通图H、团盖、反馈顶点集和边支配集的顶点不相交H填充的近似图灵核化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信