Eva-Maria C. Hols , Stefan Kratsch, Astrid Pieterse
{"title":"Approximate Turing kernelization for problems parameterized by treewidth","authors":"Eva-Maria C. Hols , Stefan Kratsch, Astrid Pieterse","doi":"10.1016/j.jcss.2025.103720","DOIUrl":null,"url":null,"abstract":"<div><div>We extend the notion of lossy kernelization, introduced by Lokshtanov et al. (2017) <span><span>[19]</span></span>, to approximate Turing kernelization. An <em>α</em>-approximate Turing kernelization for a parameterized optimization problem is a polynomial-time algorithm that, when given access to an oracle that outputs <em>c</em>-approximate solutions in <span><math><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> time, computes an <span><math><mi>α</mi><mo>⋅</mo><mi>c</mi></math></span>-approximate solution to the considered problem, using calls to the oracle of size at most <span><math><mi>f</mi><mo>(</mo><mi>k</mi><mo>)</mo></math></span> for some function <em>f</em> that only depends on the parameter. Using this definition, we show that <span>Independent Set</span> parameterized by treewidth <em>ℓ</em> has a <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo>)</mo></math></span>-approximate Turing kernelization with <span><math><mi>O</mi><mo>(</mo><mfrac><mrow><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mi>ε</mi></mrow></mfrac><mo>)</mo></math></span> vertices, answering an open question posed by Lokshtanov et al. (2017) <span><span>[19]</span></span>. Furthermore, we give <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo>)</mo></math></span>-approximate Turing kernelizations for the following graph problems parameterized by treewidth: <span>Vertex Cover</span>, <span>Edge Clique Cover</span>, <span>Edge-Disjoint Triangle Packing</span>, and <span>Connected Vertex Cover</span>. We generalize the result for <span>Independent Set</span> and <span>Vertex Cover</span> by showing that all graph problems that we will call <em>friendly</em> admit <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo>)</mo></math></span>-approximate Turing kernelizations of polynomial size when parameterized by treewidth. We use this to establish approximate Turing kernelizations for <span>Vertex-Disjoint</span> <em>H</em><span>-packing</span> for connected graphs <em>H</em>, <span>Clique Cover</span>, <span>Feedback Vertex Set</span>, and <span>Edge Dominating Set</span>.</div></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"156 ","pages":"Article 103720"},"PeriodicalIF":0.9000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000025001023","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0
Abstract
We extend the notion of lossy kernelization, introduced by Lokshtanov et al. (2017) [19], to approximate Turing kernelization. An α-approximate Turing kernelization for a parameterized optimization problem is a polynomial-time algorithm that, when given access to an oracle that outputs c-approximate solutions in time, computes an -approximate solution to the considered problem, using calls to the oracle of size at most for some function f that only depends on the parameter. Using this definition, we show that Independent Set parameterized by treewidth ℓ has a -approximate Turing kernelization with vertices, answering an open question posed by Lokshtanov et al. (2017) [19]. Furthermore, we give -approximate Turing kernelizations for the following graph problems parameterized by treewidth: Vertex Cover, Edge Clique Cover, Edge-Disjoint Triangle Packing, and Connected Vertex Cover. We generalize the result for Independent Set and Vertex Cover by showing that all graph problems that we will call friendly admit -approximate Turing kernelizations of polynomial size when parameterized by treewidth. We use this to establish approximate Turing kernelizations for Vertex-DisjointH-packing for connected graphs H, Clique Cover, Feedback Vertex Set, and Edge Dominating Set.
期刊介绍:
The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions.
Research areas include traditional subjects such as:
• Theory of algorithms and computability
• Formal languages
• Automata theory
Contemporary subjects such as:
• Complexity theory
• Algorithmic Complexity
• Parallel & distributed computing
• Computer networks
• Neural networks
• Computational learning theory
• Database theory & practice
• Computer modeling of complex systems
• Security and Privacy.