Florian Bridoux, Aymeric Picard Marchetto, Adrien Richard
{"title":"Interaction graphs of isomorphic automata networks II: Universal dynamics","authors":"Florian Bridoux, Aymeric Picard Marchetto, Adrien Richard","doi":"10.1016/j.jcss.2025.103717","DOIUrl":null,"url":null,"abstract":"<div><div>An automata network with <em>n</em> components over a finite alphabet <em>Q</em> of size <em>q</em> is a discrete dynamical system described by the successive iterations of a function <span><math><mi>f</mi><mo>:</mo><msup><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><msup><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. In most applications, the main parameter is the interaction graph of <em>f</em>: the digraph with vertex set <span><math><mo>[</mo><mi>n</mi><mo>]</mo></math></span> that contains an arc from <em>j</em> to <em>i</em> if <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> depends on input <em>j</em>. What can be said on the set <span><math><mi>G</mi><mo>(</mo><mi>f</mi><mo>)</mo></math></span> of the interaction graphs of the automata networks isomorphic to <em>f</em>? It seems that this simple question has never been studied. In a previous paper, we prove that the complete digraph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, with <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> arcs, is universal in that <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>∈</mo><mi>G</mi><mo>(</mo><mi>f</mi><mo>)</mo></math></span> whenever <em>f</em> is not constant nor the identity (and <span><math><mi>n</mi><mo>≥</mo><mn>5</mn></math></span>). In this paper, taking the opposite direction, we prove that there exist universal automata networks <em>f</em>, in that <span><math><mi>G</mi><mo>(</mo><mi>f</mi><mo>)</mo></math></span> contains all the digraphs on <span><math><mo>[</mo><mi>n</mi><mo>]</mo></math></span>, excepted the empty one. Actually, we prove that the presence of only three specific digraphs in <span><math><mi>G</mi><mo>(</mo><mi>f</mi><mo>)</mo></math></span> implies the universality of <em>f</em>, and we prove that this forces the alphabet size <em>q</em> to have at least <em>n</em> prime factors (with multiplicity). However, we prove that for any fixed <span><math><mi>q</mi><mo>≥</mo><mn>3</mn></math></span>, there exists almost universal functions, that is, functions <span><math><mi>f</mi><mo>:</mo><msup><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><msup><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> such that the probability that a random digraph belongs to <span><math><mi>G</mi><mo>(</mo><mi>f</mi><mo>)</mo></math></span> tends to 1 as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>. We do not know if this holds in the binary case <span><math><mi>q</mi><mo>=</mo><mn>2</mn></math></span>, providing only partial results.</div></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"156 ","pages":"Article 103717"},"PeriodicalIF":0.9000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000025000996","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0
Abstract
An automata network with n components over a finite alphabet Q of size q is a discrete dynamical system described by the successive iterations of a function . In most applications, the main parameter is the interaction graph of f: the digraph with vertex set that contains an arc from j to i if depends on input j. What can be said on the set of the interaction graphs of the automata networks isomorphic to f? It seems that this simple question has never been studied. In a previous paper, we prove that the complete digraph , with arcs, is universal in that whenever f is not constant nor the identity (and ). In this paper, taking the opposite direction, we prove that there exist universal automata networks f, in that contains all the digraphs on , excepted the empty one. Actually, we prove that the presence of only three specific digraphs in implies the universality of f, and we prove that this forces the alphabet size q to have at least n prime factors (with multiplicity). However, we prove that for any fixed , there exists almost universal functions, that is, functions such that the probability that a random digraph belongs to tends to 1 as . We do not know if this holds in the binary case , providing only partial results.
期刊介绍:
The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions.
Research areas include traditional subjects such as:
• Theory of algorithms and computability
• Formal languages
• Automata theory
Contemporary subjects such as:
• Complexity theory
• Algorithmic Complexity
• Parallel & distributed computing
• Computer networks
• Neural networks
• Computational learning theory
• Database theory & practice
• Computer modeling of complex systems
• Security and Privacy.