Faster winner determination algorithms for (Colored) Arc Kayles

IF 0.9 3区 计算机科学 Q1 BUSINESS, FINANCE
Tesshu Hanaka , Hironori Kiya , Michael Lampis , Hirotaka Ono , Kanae Yoshiwatari
{"title":"Faster winner determination algorithms for (Colored) Arc Kayles","authors":"Tesshu Hanaka ,&nbsp;Hironori Kiya ,&nbsp;Michael Lampis ,&nbsp;Hirotaka Ono ,&nbsp;Kanae Yoshiwatari","doi":"10.1016/j.jcss.2025.103716","DOIUrl":null,"url":null,"abstract":"<div><div><span>Arc Kayles</span> and <span>Colored Arc Kayles</span> are generalized versions of well-studied combinatorial games <span>Cram</span> and <span>Domineering</span>, respectively. In <span>Arc Kayles</span>, two players alternately choose an edge to remove with its adjacent edges, and the player who cannot move is the loser. <span>Colored Arc Kayles</span> is similarly played on a graph with edges colored in black, white, or gray, in which the black (resp., white) player can choose only a gray or black (resp., white) edge. For <span>Arc Kayles</span>, the vertex cover number <em>τ</em> (i.e., the minimum size of a vertex cover) is an essential invariant because it is known that twice the vertex cover number upper bounds the number of turns of <span>Arc Kayles</span>, and for the winner determination of <span>(Colored) Arc Kayles</span>, <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span>-time algorithms are known, where <em>n</em> is the number of vertices. In this paper, we first give a polynomial kernel for <span>Colored Arc Kayles</span> parameterized by <em>τ</em>, which leads to a faster <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>τ</mi><mi>log</mi><mo>⁡</mo><mi>τ</mi><mo>)</mo></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span>-time algorithm for <span>Colored Arc Kayles</span>. We then focus on <span>Arc Kayles</span> on trees, and propose a <span><math><msup><mrow><mn>2.2361</mn></mrow><mrow><mi>τ</mi></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span>-time algorithm. Furthermore, we show that determining the winner of <span>Arc Kayles</span> on a tree can be done in <span><math><mi>O</mi><mo>(</mo><msup><mrow><mn>1.3831</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> time, which improves the best-known running time of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mn>1.4143</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>. Finally, we show that <span>Colored Arc Kayles</span> is NP-hard, the first hardness result in the family of the above games.</div></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"156 ","pages":"Article 103716"},"PeriodicalIF":0.9000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000025000984","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

Arc Kayles and Colored Arc Kayles are generalized versions of well-studied combinatorial games Cram and Domineering, respectively. In Arc Kayles, two players alternately choose an edge to remove with its adjacent edges, and the player who cannot move is the loser. Colored Arc Kayles is similarly played on a graph with edges colored in black, white, or gray, in which the black (resp., white) player can choose only a gray or black (resp., white) edge. For Arc Kayles, the vertex cover number τ (i.e., the minimum size of a vertex cover) is an essential invariant because it is known that twice the vertex cover number upper bounds the number of turns of Arc Kayles, and for the winner determination of (Colored) Arc Kayles, 2O(τ2)nO(1)-time algorithms are known, where n is the number of vertices. In this paper, we first give a polynomial kernel for Colored Arc Kayles parameterized by τ, which leads to a faster 2O(τlogτ)nO(1)-time algorithm for Colored Arc Kayles. We then focus on Arc Kayles on trees, and propose a 2.2361τnO(1)-time algorithm. Furthermore, we show that determining the winner of Arc Kayles on a tree can be done in O(1.3831n) time, which improves the best-known running time of O(1.4143n). Finally, we show that Colored Arc Kayles is NP-hard, the first hardness result in the family of the above games.
更快的(有色)Arc Kayles赢家判定算法
《Arc Kayles》和《Colored Arc Kayles》分别是组合游戏《Cram》和《Domineering》的推广版本。在《Arc Kayles》中,两名玩家轮流选择一条边与其相邻边一起移除,无法移动的玩家就是输家。彩色圆弧Kayles同样是在边缘为黑色,白色或灰色的图形上进行的,其中黑色(代表黑色)。(如白色)玩家只能选择灰色或黑色。(白色)边缘。对于Arc Kayles,顶点覆盖数τ(即顶点覆盖的最小尺寸)是一个重要的不变量,因为已知顶点覆盖数的两倍上界是Arc Kayles的回合数,并且对于(有色)Arc Kayles的获胜者确定,已知2O(τ2)nO(1)时间算法,其中n为顶点数。本文首先给出了用τ参数化的有色弧Kayles的多项式核,该多项式核使得有色弧Kayles的求解速度更快,算法的求解时间为20 (τlog (τ)nO(1)。在此基础上,提出了一种2.2361τnO(1)时间算法。此外,我们证明了在树上确定Arc Kayles的获胜者可以在O(1.3831n)时间内完成,这改进了最知名的运行时间O(1.4143n)。最后,我们证明了Colored Arc Kayles是NP-hard,这是上述游戏族中的第一个硬度结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信