Elastic fields of surface steps and notches and associated cracks

IF 5.3 2区 工程技术 Q1 MECHANICS
Bonan Wang , Yangjian Si , Yujie Wei
{"title":"Elastic fields of surface steps and notches and associated cracks","authors":"Bonan Wang ,&nbsp;Yangjian Si ,&nbsp;Yujie Wei","doi":"10.1016/j.engfracmech.2025.111571","DOIUrl":null,"url":null,"abstract":"<div><div>Surface notches or steps may induce local stress concentration. As a consequence, they play a central role in oxidation, corrosion, and fatigue cracking in engineering practice. In this paper, we supply analytic solutions of half-space steps and notches with or without cracks. Full-field displacements and stresses, general stress intensity factors (SIFs) at the root of steps and notches or the crack tips after crack initiation, as well as separation across the crack plane, are readily calculated. For a step of height <span><math><mi>h</mi></math></span> on the half-space, it generates a stress field around the root in the form of <span><math><mrow><mi>σ</mi><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>γ</mi><mo>,</mo><mi>α</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mi>K</mi></mrow><mrow><mo>∗</mo></mrow></msup><mrow><mo>(</mo><mi>γ</mi><mo>,</mo><mi>α</mi><mo>)</mo></mrow><mfenced><mrow><msup><mrow><mfenced><mrow><mfrac><mrow><mi>r</mi></mrow><mrow><mi>h</mi></mrow></mfrac></mrow></mfenced></mrow><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow></mrow></msup><mo>+</mo><mi>o</mi><mfenced><mrow><msup><mrow><mfenced><mrow><mfrac><mrow><mi>r</mi></mrow><mrow><mi>h</mi></mrow></mfrac></mrow></mfenced></mrow><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow></mrow></msup></mrow></mfenced></mrow></mfenced></mrow></math></span>, where <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is the order of singularity given in terms of the slope angle <span><math><mi>α</mi></math></span> of the step with <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow><mo>≈</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mi>α</mi><mo>+</mo><mi>π</mi></mrow></mfrac><msqrt><mrow><mfrac><mrow><mn>1</mn><mo>+</mo><mtext>sinc</mtext><mrow><mo>(</mo><mi>α</mi><mo>+</mo><mi>π</mi><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>−</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>6</mn></mrow></mfrac><mtext>sinc</mtext><mrow><mo>(</mo><mi>α</mi><mo>+</mo><mi>π</mi><mo>)</mo></mrow></mrow></mfrac></mrow></msqrt><mo>−</mo><mn>1</mn><mspace></mspace><mtext>for</mtext><mspace></mspace><mtext>sinc</mtext><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mo>sin</mo><mi>x</mi></mrow><mrow><mi>x</mi></mrow></mfrac></mrow></math></span>, and <span><math><mrow><mi>K</mi><mrow><mo>(</mo><mi>γ</mi><mo>,</mo><mi>α</mi><mo>)</mo></mrow></mrow></math></span> is the general SIFs associated with steps and notches. The same conclusion applies to a V-notch of depth <span><math><mi>h</mi></math></span> and an opening angle of <span><math><mrow><mi>π</mi><mo>−</mo><mi>α</mi></mrow></math></span>. When a crack emanating from the root of the step or notch, the SIFs in terms of the newly formed crack of length <span><math><mi>a</mi></math></span> follows <span><math><mrow><mfrac><mrow><mi>K</mi></mrow><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>0</mn></mrow></msub><msqrt><mrow><mi>π</mi><mi>a</mi></mrow></msqrt></mrow></mfrac><mo>=</mo><msub><mrow><mi>Q</mi></mrow><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></mrow><msup><mrow><mfenced><mrow><mfrac><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></mfrac></mrow></mfenced></mrow><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup></mrow></math></span> for short cracks, and <span><math><mrow><mfrac><mrow><mi>K</mi></mrow><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>0</mn></mrow></msub><msqrt><mrow><mi>π</mi><mi>a</mi></mrow></msqrt></mrow></mfrac><mo>=</mo><msub><mrow><mi>Q</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>β</mi><mo>)</mo></mrow><msup><mrow><mfenced><mrow><mfrac><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></mfrac></mrow></mfenced></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>+</mo><msup><mrow><mi>k</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span> for long cracks, where <span><math><mi>β</mi></math></span> describes the direction of the crack and <span><math><msub><mrow><mi>Q</mi></mrow><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub></math></span> and <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msub></math></span> are dimensionless factors accounting for the geometry difference. The analysis presented here not only reveals the intriguing interplay between cracks and steps (or notches), but also supplies an analytical tool for reliability analysis of steps and notches beyond the reach of perturbation based analysis: the distinct stress singularity before and after crack initiation excludes an expression of SIFs of the cracked part based on the linear composition of SIFs from its uncracked status.</div></div>","PeriodicalId":11576,"journal":{"name":"Engineering Fracture Mechanics","volume":"328 ","pages":"Article 111571"},"PeriodicalIF":5.3000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013794425007726","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Surface notches or steps may induce local stress concentration. As a consequence, they play a central role in oxidation, corrosion, and fatigue cracking in engineering practice. In this paper, we supply analytic solutions of half-space steps and notches with or without cracks. Full-field displacements and stresses, general stress intensity factors (SIFs) at the root of steps and notches or the crack tips after crack initiation, as well as separation across the crack plane, are readily calculated. For a step of height h on the half-space, it generates a stress field around the root in the form of σ(r,γ,α)=σ0K(γ,α)rhλ1(α)+orhλ1(α), where λ1 is the order of singularity given in terms of the slope angle α of the step with λ1(α)πα+π1+sinc(α+π)156sinc(α+π)1forsinc(x)=sinxx, and K(γ,α) is the general SIFs associated with steps and notches. The same conclusion applies to a V-notch of depth h and an opening angle of πα. When a crack emanating from the root of the step or notch, the SIFs in terms of the newly formed crack of length a follows Kσ0πa=Qλ1(α,β)ahλ1 for short cracks, and Kσ0πa=Q1(β)ah1+k for long cracks, where β describes the direction of the crack and Qλ1 and Q1 are dimensionless factors accounting for the geometry difference. The analysis presented here not only reveals the intriguing interplay between cracks and steps (or notches), but also supplies an analytical tool for reliability analysis of steps and notches beyond the reach of perturbation based analysis: the distinct stress singularity before and after crack initiation excludes an expression of SIFs of the cracked part based on the linear composition of SIFs from its uncracked status.
表面台阶、缺口和相关裂纹的弹性场
表面缺口或台阶可能引起局部应力集中。因此,在工程实践中,它们在氧化、腐蚀和疲劳开裂中起着核心作用。本文给出了带或不带裂纹的半空间台阶和缺口的解析解。在裂纹起裂后,台阶根部和缺口根部或裂纹尖端的全场位移和应力、一般应力强度因子(SIFs)以及裂纹平面上的分离都很容易计算出来。对于半空间上高度为h的阶跃,在根周围产生应力场,其形式为σ(r,γ,α)=σ 0k∗(γ,α)rhλ1(α)+orhλ1(α),其中λ1是由阶跃的斜率角α给出的奇异阶数,λ1(α)≈πα+π1+sinc(α+π)1−56sinc(α+π)−1forsinc(x)=sinxx, K(γ,α)是阶跃与缺口相关的一般SIFs。同样的结论也适用于深度为h和开口角为π−α的v型缺口。当裂纹从台阶或缺口根部发出时,新形成的长度为a的裂纹的SIFs为:短裂纹为Kσ0πa=Qλ1(α,β)ahλ1,长裂纹为Kσ0πa=Q−1(β)ah−1+k∗,其中β表示裂纹的方向,Qλ1和Q−1是解释几何差异的无因次因子。本文的分析不仅揭示了裂纹与台阶(或缺口)之间有趣的相互作用,而且为台阶和缺口的可靠性分析提供了一种分析工具,这种分析超出了基于摄动分析的范围:裂纹起裂前后明显的应力奇异性排除了裂纹部分的SIFs表达式,该表达式基于未裂纹状态下SIFs的线性组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
13.00%
发文量
606
审稿时长
74 days
期刊介绍: EFM covers a broad range of topics in fracture mechanics to be of interest and use to both researchers and practitioners. Contributions are welcome which address the fracture behavior of conventional engineering material systems as well as newly emerging material systems. Contributions on developments in the areas of mechanics and materials science strongly related to fracture mechanics are also welcome. Papers on fatigue are welcome if they treat the fatigue process using the methods of fracture mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信