Reconciling volume- and mass-based hygroscopicity parameters: Insights from coupled H-TDMA–APM measurements

IF 3.7 2区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Ta-Chih Hsiao , Ke-Ching Chen , Jun-Fa Ye , Si-Chee Tsay , Neng-Huei Lin
{"title":"Reconciling volume- and mass-based hygroscopicity parameters: Insights from coupled H-TDMA–APM measurements","authors":"Ta-Chih Hsiao ,&nbsp;Ke-Ching Chen ,&nbsp;Jun-Fa Ye ,&nbsp;Si-Chee Tsay ,&nbsp;Neng-Huei Lin","doi":"10.1016/j.atmosenv.2025.121571","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates aerosol hygroscopicity by reconciling volume-based (<strong>κᵥ</strong>) and mass-based (κ<sub>m</sub>) hygroscopicity parameters through a dual-system approach combining a Hygroscopic Tandem Differential Mobility Analyzer (H-TDMA) and a Hygroscopic Differential Mobility Analyzer–Aerosol Particle Mass Analyzer (H-DMA-APM). The integrated system enables simultaneous measurement of size and mass growth factors for pure and internally mixed sub-100 nm NaCl and (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> particles under varying relative humidities (RH). Results show that <strong>κᵥ</strong> exhibits strong size dependence, declining by over 25 % as particle diameter decreases from 51.4 nm to 20.2 nm, attributed to curvature effects and morphology-induced artifacts. In contrast, κ<sub>m</sub> shows a more stable trend across sizes, varying by less than 15 %, reflecting its robustness against morphological and curvature influences. However, κ<sub>m</sub> did not consistently outperform <strong>κᵥ</strong> in predictive accuracy, likely due to the broader classification resolution of the APM system. While κ<sub>m</sub> remains a theoretically superior parameter, <strong>κᵥ</strong>, when derived from high-resolution HTDMA systems, remains an effective predictor of hygroscopic growth. These findings highlight the importance of particle size, morphology, and instrumentation in characterizing aerosol hygroscopicity and advocate for the complementary use of <strong>κᵥ</strong> and κ<sub>m</sub> in climate-relevant aerosol studies.</div></div>","PeriodicalId":250,"journal":{"name":"Atmospheric Environment","volume":"362 ","pages":"Article 121571"},"PeriodicalIF":3.7000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1352231025005461","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates aerosol hygroscopicity by reconciling volume-based (κᵥ) and mass-based (κm) hygroscopicity parameters through a dual-system approach combining a Hygroscopic Tandem Differential Mobility Analyzer (H-TDMA) and a Hygroscopic Differential Mobility Analyzer–Aerosol Particle Mass Analyzer (H-DMA-APM). The integrated system enables simultaneous measurement of size and mass growth factors for pure and internally mixed sub-100 nm NaCl and (NH4)2SO4 particles under varying relative humidities (RH). Results show that κᵥ exhibits strong size dependence, declining by over 25 % as particle diameter decreases from 51.4 nm to 20.2 nm, attributed to curvature effects and morphology-induced artifacts. In contrast, κm shows a more stable trend across sizes, varying by less than 15 %, reflecting its robustness against morphological and curvature influences. However, κm did not consistently outperform κᵥ in predictive accuracy, likely due to the broader classification resolution of the APM system. While κm remains a theoretically superior parameter, κᵥ, when derived from high-resolution HTDMA systems, remains an effective predictor of hygroscopic growth. These findings highlight the importance of particle size, morphology, and instrumentation in characterizing aerosol hygroscopicity and advocate for the complementary use of κᵥ and κm in climate-relevant aerosol studies.
调和基于体积和质量的吸湿性参数:来自耦合H-TDMA-APM测量的见解
本研究通过双系统方法,结合吸湿性串联差分迁移率分析仪(H-TDMA)和吸湿性差分迁移率分析仪-气溶胶粒子质量分析仪(H-DMA-APM),通过协调基于体积(κᵥ)和基于质量(κm)的吸湿性参数来研究气溶胶的吸湿性。该集成系统能够在不同相对湿度(RH)下同时测量纯和内部混合的小于100 nm NaCl和(NH4)2SO4颗粒的尺寸和质量生长因子。结果表明,κᵥ表现出强烈的尺寸依赖性,当颗粒直径从51.4 nm减小到20.2 nm时,由于曲率效应和形态诱导伪影,κᵥ下降了25%以上。相比之下,κm在不同尺寸上表现出更稳定的趋势,变化小于15%,反映了其对形态和曲率影响的鲁棒性。然而,κm在预测精度上并没有始终优于κᵥ,这可能是由于APM系统的分类分辨率更广。虽然κm仍然是一个理论上优越的参数,但κᵥ,当来自高分辨率HTDMA系统时,仍然是吸湿生长的有效预测因子。这些发现强调了颗粒大小、形态和仪器在表征气溶胶吸湿性中的重要性,并提倡在与气候相关的气溶胶研究中补充使用κᵥ和κm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric Environment
Atmospheric Environment 环境科学-环境科学
CiteScore
9.40
自引率
8.00%
发文量
458
审稿时长
53 days
期刊介绍: Atmospheric Environment has an open access mirror journal Atmospheric Environment: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Atmospheric Environment is the international journal for scientists in different disciplines related to atmospheric composition and its impacts. The journal publishes scientific articles with atmospheric relevance of emissions and depositions of gaseous and particulate compounds, chemical processes and physical effects in the atmosphere, as well as impacts of the changing atmospheric composition on human health, air quality, climate change, and ecosystems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信