Predicting six-month mortality in adult hemophagocytic lymphohistiocytosis with machine learning: a prognostic approach utilizing laboratory data.

IF 4.3
Annals of medicine Pub Date : 2025-12-01 Epub Date: 2025-10-03 DOI:10.1080/07853890.2025.2566869
Jun Zhou, Mingjun Xie, Yongbin Ma, Min Wang, Jingping Liu, Yaman Wang, Mengxiao Xie, Hua-Guo Xu
{"title":"Predicting six-month mortality in adult hemophagocytic lymphohistiocytosis with machine learning: a prognostic approach utilizing laboratory data.","authors":"Jun Zhou, Mingjun Xie, Yongbin Ma, Min Wang, Jingping Liu, Yaman Wang, Mengxiao Xie, Hua-Guo Xu","doi":"10.1080/07853890.2025.2566869","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hemophagocytic lymphohistiocytosis (HLH) is associated with high mortality rates. This study was conducted to develop and validate a predictive model for adult HLH patients at high risk of six months mortality using machine learning (ML) algorithms.</p><p><strong>Methods: </strong>The study utilized univariate analysis and LASSO regression, incorporating eleven ML algorithms, to perform a comprehensive analysis of both admission and discharge variables. Model performance was assessed using metrics such as AUC, F1 score, Kaplan Meier (KM) curves, calibration curves and decision curve analysis (DCA).</p><p><strong>Results: </strong>A total of 136 patients meeting the HLH-2004 criteria were included in this study. Among them, 59 patients received chemotherapy or other cytotoxic drugs, while the remaining 77 patients underwent symptomatic treatment. The median age was 52 years among nonsurvivors and 48 years among survivors, with 47 (42.6%) males in the nonsurvivor group and 31 (47.6%) in the survivor group. Age and nine discharge variables were identified as the most significant features for model construction. Random forest (RF) algorithm demonstrated superior predictive capabilities, achieving an AUC of 1.00, accuracy of 0.98 and F1 score of 0.98 in the training cohort, and an AUC of 0.89, accuracy of 0.85 and F1 score of 0.85 in the validation cohort. The top five predictors were all discharge variables (ferritin, white blood cell (WBC), albumin (ALB), platelet (PLT) and direct bilirubin (DB)).</p><p><strong>Conclusion: </strong>The predictive model developed in this study provides a valuable tool for clinicians to early identify high-risk HLH patients, thereby enabling more targeted and effective interventions.</p>","PeriodicalId":93874,"journal":{"name":"Annals of medicine","volume":"57 1","pages":"2566869"},"PeriodicalIF":4.3000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12498379/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07853890.2025.2566869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Hemophagocytic lymphohistiocytosis (HLH) is associated with high mortality rates. This study was conducted to develop and validate a predictive model for adult HLH patients at high risk of six months mortality using machine learning (ML) algorithms.

Methods: The study utilized univariate analysis and LASSO regression, incorporating eleven ML algorithms, to perform a comprehensive analysis of both admission and discharge variables. Model performance was assessed using metrics such as AUC, F1 score, Kaplan Meier (KM) curves, calibration curves and decision curve analysis (DCA).

Results: A total of 136 patients meeting the HLH-2004 criteria were included in this study. Among them, 59 patients received chemotherapy or other cytotoxic drugs, while the remaining 77 patients underwent symptomatic treatment. The median age was 52 years among nonsurvivors and 48 years among survivors, with 47 (42.6%) males in the nonsurvivor group and 31 (47.6%) in the survivor group. Age and nine discharge variables were identified as the most significant features for model construction. Random forest (RF) algorithm demonstrated superior predictive capabilities, achieving an AUC of 1.00, accuracy of 0.98 and F1 score of 0.98 in the training cohort, and an AUC of 0.89, accuracy of 0.85 and F1 score of 0.85 in the validation cohort. The top five predictors were all discharge variables (ferritin, white blood cell (WBC), albumin (ALB), platelet (PLT) and direct bilirubin (DB)).

Conclusion: The predictive model developed in this study provides a valuable tool for clinicians to early identify high-risk HLH patients, thereby enabling more targeted and effective interventions.

Abstract Image

Abstract Image

Abstract Image

用机器学习预测成人噬血细胞淋巴组织细胞病的6个月死亡率:利用实验室数据的预后方法。
背景:噬血细胞性淋巴组织细胞增多症(HLH)与高死亡率相关。本研究旨在利用机器学习(ML)算法开发并验证成人HLH 6个月死亡率高风险患者的预测模型。方法:采用单变量分析和LASSO回归,结合11种ML算法,对入院和出院变量进行综合分析。采用AUC、F1评分、Kaplan Meier (KM)曲线、校准曲线和决策曲线分析(DCA)等指标评估模型性能。结果:本研究共纳入136例符合HLH-2004标准的患者。其中59例患者接受化疗或其他细胞毒性药物治疗,77例患者接受对症治疗。非幸存者的中位年龄为52岁,幸存者的中位年龄为48岁,非幸存者组中有47名男性(42.6%),幸存者组中有31名男性(47.6%)。年龄和9个放电变量被确定为模型构建的最重要特征。随机森林(Random forest, RF)算法具有较强的预测能力,在训练队列中AUC为1.00,准确率为0.98,F1得分为0.98;在验证队列中AUC为0.89,准确率为0.85,F1得分为0.85。排在前五位的预测指标均为排血变量(铁蛋白、白细胞(WBC)、白蛋白(ALB)、血小板(PLT)和直接胆红素(DB))。结论:本研究建立的预测模型为临床医生早期识别高危HLH患者提供了有价值的工具,从而实现更有针对性和更有效的干预。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信