Probiotic Bacillus subtilis enhances silkworm (Bombyx mori) growth performance and silk production via modulating gut microbiota and amino acid metabolism.

IF 4.4 Q1 MICROBIOLOGY
Chunjiu Ren, Yingchen Meng, Yangyang Liu, Yi Wang, Huizhen Wang, Yating Liu, Changjun Liu, Xin Fan, Shengxiang Zhang
{"title":"Probiotic Bacillus subtilis enhances silkworm (Bombyx mori) growth performance and silk production via modulating gut microbiota and amino acid metabolism.","authors":"Chunjiu Ren, Yingchen Meng, Yangyang Liu, Yi Wang, Huizhen Wang, Yating Liu, Changjun Liu, Xin Fan, Shengxiang Zhang","doi":"10.1186/s42523-025-00473-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Artificial diet-reared silkworms (Bombyx mori) exhibit reduced gut microbial diversity and impaired growth performance compared to mulberry-fed counterparts. While Bacillus subtilis is widely used as a probiotic in livestock and aquaculture, its impact on silkworms remains unexplored. This study investigates whether dietary supplementation with B. subtilis enhances larval development and elucidates the underlying mechanisms involving gut microbiota and metabolic pathways.</p><p><strong>Results: </strong>Supplementing artificial diets with B. subtilis (6 × 10<sup>5</sup> CFU/g) significantly increased larval body weight by 9.1-22.1% during instar stages and improved feed utilization efficiency (FUE) by 4.09%-6.80% compared to controls. Cocoon quality metrics, including cocoon shell weight (+ 9.77% in females) and cocoon shell ratio (+ 6.56%), also improved. Mechanistically, B. subtilis did not colonize the midgut but transiently modulated gut physiology: it elevated midgut fluid pH and enhanced α-amylase, trypsin, and lipase activities. 16 S rRNA sequencing revealed reduced gut microbial diversity (Shannon index, P < 0.01) and shifts in community structure, with decreased abundances of potential pathogens (e.g., Pseudomonas) and commensals (e.g., Lactobacillus). Targeted metabolomics identified a 3.1-fold increase in phenylalanine levels in hemolymph, linked to upregulated aromatic amino acid metabolism pathways (KEGG). Dietary phenylalanine supplementation (0.4%) replicated B. subtilis-induced growth promotion, confirming its pivotal role in host-microbe interactions.</p><p><strong>Conclusions: </strong>B. subtilis enhances silkworm growth and silk production through multi-faceted mechanisms: reshaping gut microbiota composition, improving digestive enzyme activity, and elevating phenylalanine biosynthesis. These findings establish B. subtilis as a promising probiotic for optimizing artificial diet systems in Lepidoptera and highlight the central role of amino acid metabolism in insect-microbiome symbiosis.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"7 1","pages":"103"},"PeriodicalIF":4.4000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12495873/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal microbiome","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42523-025-00473-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Artificial diet-reared silkworms (Bombyx mori) exhibit reduced gut microbial diversity and impaired growth performance compared to mulberry-fed counterparts. While Bacillus subtilis is widely used as a probiotic in livestock and aquaculture, its impact on silkworms remains unexplored. This study investigates whether dietary supplementation with B. subtilis enhances larval development and elucidates the underlying mechanisms involving gut microbiota and metabolic pathways.

Results: Supplementing artificial diets with B. subtilis (6 × 105 CFU/g) significantly increased larval body weight by 9.1-22.1% during instar stages and improved feed utilization efficiency (FUE) by 4.09%-6.80% compared to controls. Cocoon quality metrics, including cocoon shell weight (+ 9.77% in females) and cocoon shell ratio (+ 6.56%), also improved. Mechanistically, B. subtilis did not colonize the midgut but transiently modulated gut physiology: it elevated midgut fluid pH and enhanced α-amylase, trypsin, and lipase activities. 16 S rRNA sequencing revealed reduced gut microbial diversity (Shannon index, P < 0.01) and shifts in community structure, with decreased abundances of potential pathogens (e.g., Pseudomonas) and commensals (e.g., Lactobacillus). Targeted metabolomics identified a 3.1-fold increase in phenylalanine levels in hemolymph, linked to upregulated aromatic amino acid metabolism pathways (KEGG). Dietary phenylalanine supplementation (0.4%) replicated B. subtilis-induced growth promotion, confirming its pivotal role in host-microbe interactions.

Conclusions: B. subtilis enhances silkworm growth and silk production through multi-faceted mechanisms: reshaping gut microbiota composition, improving digestive enzyme activity, and elevating phenylalanine biosynthesis. These findings establish B. subtilis as a promising probiotic for optimizing artificial diet systems in Lepidoptera and highlight the central role of amino acid metabolism in insect-microbiome symbiosis.

枯草芽孢杆菌通过调节肠道菌群和氨基酸代谢提高家蚕的生长性能和产丝能力。
背景:人工饲料饲养的家蚕(家蚕)与桑蚕相比,肠道微生物多样性减少,生长性能受损。虽然枯草芽孢杆菌作为一种益生菌被广泛应用于家畜和水产养殖,但它对家蚕的影响尚不清楚。本研究探讨了饲粮中添加枯草芽孢杆菌是否能促进幼虫发育,并阐明了涉及肠道微生物群和代谢途径的潜在机制。结果:与对照组相比,在人工饲料中添加枯草芽孢杆菌(6 × 105 CFU/g)可显著提高幼虫早期体重9.1 ~ 22.1%,饲料利用效率(FUE)提高4.09% ~ 6.80%。茧质量指标,包括茧重(雌蜂+ 9.77%)和茧比(雌蜂+ 6.56%)也有所改善。从机制上讲,枯草芽孢杆菌不会在中肠定植,但会短暂地调节肠道生理:它会升高中肠液pH值,增强α-淀粉酶、胰蛋白酶和脂肪酶的活性。结论:枯草芽孢杆菌通过重塑肠道菌群组成、提高消化酶活性、促进苯丙氨酸生物合成等多种机制促进家蚕生长和产丝。这些发现表明枯草芽孢杆菌是一种很有希望用于优化鳞翅目人工饲料系统的益生菌,并强调了氨基酸代谢在昆虫-微生物共生中的核心作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信