Bioinspired thermoreversible bioink orchestrates focal adhesion-dependent osteogenesis.

IF 14.9 1区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Tanmay Gupta, Pritish Rath, Viktoriya Pakharenko, Abhijit Vyas, Lena Hofsass, Amirjalal Jalali, Samit Kumar Nandi, Eli D Sone, Subrata Bandhu Ghosh, Sanchita Bandhyopadhyay-Ghosh, Mohini Sain
{"title":"Bioinspired thermoreversible bioink orchestrates focal adhesion-dependent osteogenesis.","authors":"Tanmay Gupta, Pritish Rath, Viktoriya Pakharenko, Abhijit Vyas, Lena Hofsass, Amirjalal Jalali, Samit Kumar Nandi, Eli D Sone, Subrata Bandhu Ghosh, Sanchita Bandhyopadhyay-Ghosh, Mohini Sain","doi":"10.1016/j.tibtech.2025.09.007","DOIUrl":null,"url":null,"abstract":"<p><p>Synergistic integration of bone extracellular matrix (bECM) macromolecules in biomimetic bone tissue engineering (BTE) remains underexplored. This study presents a novel bioink for load-bearing 3D bioprinting (LB-3DBP), comprising gelatin and kappa-carrageenan (κC). Termed 'thermoreversible ionic-covalent entangled (TRICE) bioink', it exhibits exceptional cell viability (>92%), printability, and osteogenic capacity. This advanced multi-material bioprinting approach integrates the TRICE bioink with a calcium phosphate (CaP)-based load-bearing ink. The resulting LB-3DBP scaffolds exhibited a compressive modulus of ~33.2 MPa (comparable with trabecular bone) and up to 200-fold greater strength compared with hydrogel-only bioprints. The (ECM)-inspired TRICE bioink enhanced focal adhesion, proliferation, and MAPK/ERK-mediated osteogenic differentiation. In rabbit femoral condyle models, LB-3DBP scaffolds promoted de novo bone formation and remodeling within 8 weeks. This work bridges mechanical resilience and bioactivity in BTE, offering fully bioresorbable, patient-specific scaffolds that recapitulate the properties of native bone. Thus, our biomimetic, multi-material platform provides a scalable solution for personalized bone regeneration.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.9000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tibtech.2025.09.007","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Synergistic integration of bone extracellular matrix (bECM) macromolecules in biomimetic bone tissue engineering (BTE) remains underexplored. This study presents a novel bioink for load-bearing 3D bioprinting (LB-3DBP), comprising gelatin and kappa-carrageenan (κC). Termed 'thermoreversible ionic-covalent entangled (TRICE) bioink', it exhibits exceptional cell viability (>92%), printability, and osteogenic capacity. This advanced multi-material bioprinting approach integrates the TRICE bioink with a calcium phosphate (CaP)-based load-bearing ink. The resulting LB-3DBP scaffolds exhibited a compressive modulus of ~33.2 MPa (comparable with trabecular bone) and up to 200-fold greater strength compared with hydrogel-only bioprints. The (ECM)-inspired TRICE bioink enhanced focal adhesion, proliferation, and MAPK/ERK-mediated osteogenic differentiation. In rabbit femoral condyle models, LB-3DBP scaffolds promoted de novo bone formation and remodeling within 8 weeks. This work bridges mechanical resilience and bioactivity in BTE, offering fully bioresorbable, patient-specific scaffolds that recapitulate the properties of native bone. Thus, our biomimetic, multi-material platform provides a scalable solution for personalized bone regeneration.

生物激发热可逆性生物链接协调局灶粘连依赖性成骨。
骨细胞外基质(bECM)大分子在仿生骨组织工程(BTE)中的协同整合尚未得到充分的研究。本研究提出了一种新型的用于承载生物3D打印的生物链接(LB-3DBP),它由明胶和κC组成。它被称为“热可逆离子共价纠缠(TRICE)生物链接”,具有优异的细胞活力(>92%)、可打印性和成骨能力。这种先进的多材料生物打印方法将TRICE生物墨水与基于磷酸钙(CaP)的承重墨水集成在一起。所得LB-3DBP支架的压缩模量为~33.2 MPa(与小梁骨相当),强度是纯水凝胶生物打印材料的200倍。(ECM)激发的TRICE生物链接增强了病灶粘附、增殖和MAPK/ erk介导的成骨分化。在兔股骨髁模型中,LB-3DBP支架在8周内促进骨的新生形成和重塑。这项工作在BTE的机械弹性和生物活性之间建立了桥梁,提供了完全生物可吸收的、患者特异性的支架,再现了天然骨的特性。因此,我们的仿生多材料平台为个性化骨再生提供了可扩展的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Trends in biotechnology
Trends in biotechnology 工程技术-生物工程与应用微生物
CiteScore
28.60
自引率
1.20%
发文量
198
审稿时长
1 months
期刊介绍: Trends in Biotechnology publishes reviews and perspectives on the applied biological sciences, focusing on useful science applied to, derived from, or inspired by living systems. The major themes that TIBTECH is interested in include: Bioprocessing (biochemical engineering, applied enzymology, industrial biotechnology, biofuels, metabolic engineering) Omics (genome editing, single-cell technologies, bioinformatics, synthetic biology) Materials and devices (bionanotechnology, biomaterials, diagnostics/imaging/detection, soft robotics, biosensors/bioelectronics) Therapeutics (biofabrication, stem cells, tissue engineering and regenerative medicine, antibodies and other protein drugs, drug delivery) Agroenvironment (environmental engineering, bioremediation, genetically modified crops, sustainable development).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信