DenPAR: Annotated Intra-Oral Periapical Radiographs Dataset for Machine Learning.

IF 6.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Sumudu Rasnayaka, Dhanushka Leuke Bandara, Amali Jayasundara, Ruwan Jayasinghe, Chathura Wimalasiri, Piumal Rathnayake, Shamod Wijerathne, Roshan Ragel, Vajira Thambawita, Isuru Nawinne
{"title":"DenPAR: Annotated Intra-Oral Periapical Radiographs Dataset for Machine Learning.","authors":"Sumudu Rasnayaka, Dhanushka Leuke Bandara, Amali Jayasundara, Ruwan Jayasinghe, Chathura Wimalasiri, Piumal Rathnayake, Shamod Wijerathne, Roshan Ragel, Vajira Thambawita, Isuru Nawinne","doi":"10.1038/s41597-025-05906-9","DOIUrl":null,"url":null,"abstract":"<p><p>Dental diseases are one of the most common diseases that affect humans. Clinicians employ several techniques for diagnosing and monitoring dental diseases, with intra-oral periapical (IOPA) radiographs being among the most commonly utilized methods. The development of artificial intelligence (AI) technologies for analyzing oral radiographs is being explored across various imaging modalities. However, the limited availability of publicly accessible datasets has been a significant challenge. Although datasets of dental radiographs are available, most of these datasets contain panoramic radiographs with teeth segmentation only. This new data set includes IOPA radiographs with annotations of important landmarks along with tooth segmentation. The dataset includes 1000 images with marked landmarks, along with metadata. Researchers can leverage this resource to create AI solutions for analyzing IOPA radiographs.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"1615"},"PeriodicalIF":6.9000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12494692/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-05906-9","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Dental diseases are one of the most common diseases that affect humans. Clinicians employ several techniques for diagnosing and monitoring dental diseases, with intra-oral periapical (IOPA) radiographs being among the most commonly utilized methods. The development of artificial intelligence (AI) technologies for analyzing oral radiographs is being explored across various imaging modalities. However, the limited availability of publicly accessible datasets has been a significant challenge. Although datasets of dental radiographs are available, most of these datasets contain panoramic radiographs with teeth segmentation only. This new data set includes IOPA radiographs with annotations of important landmarks along with tooth segmentation. The dataset includes 1000 images with marked landmarks, along with metadata. Researchers can leverage this resource to create AI solutions for analyzing IOPA radiographs.

Abstract Image

Abstract Image

Abstract Image

DenPAR:用于机器学习的带注释的口腔内根尖周x线片数据集。
牙病是影响人类最常见的疾病之一。临床医生采用多种技术来诊断和监测牙科疾病,其中最常用的方法是口腔内根尖周(IOPA) x线片。人工智能(AI)技术的发展用于分析口腔x线片正在探索各种成像模式。然而,可公开访问的数据集的有限可用性一直是一个重大挑战。虽然牙科x光片数据集是可用的,但这些数据集大多包含全景x光片与牙齿分割。这个新的数据集包括IOPA x线片与重要地标的注释以及牙齿分割。该数据集包括1000张带有标记地标的图像,以及元数据。研究人员可以利用这一资源创建人工智能解决方案来分析IOPA射线照片。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信