Seismic resilience of urban networks: dataset for infrastructure visualization and vulnerability assessment.

IF 6.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Marco Civera, Fabrizio Aloschi, Galilea Margherita Di Maio, Juan Pablo Fierro Carrasco, Andrea Miano, Bernardino Chiaia, Andrea Prota
{"title":"Seismic resilience of urban networks: dataset for infrastructure visualization and vulnerability assessment.","authors":"Marco Civera, Fabrizio Aloschi, Galilea Margherita Di Maio, Juan Pablo Fierro Carrasco, Andrea Miano, Bernardino Chiaia, Andrea Prota","doi":"10.1038/s41597-025-05903-y","DOIUrl":null,"url":null,"abstract":"<p><p>We provide geographic information system (GIS) data and a multimodal dataset from a systematic infrastructure vulnerability assessment in the urban road networks of Turin and Naples, Italy. The seismic typologies of the relevant structural objects (SOs), including bridges, buildings, and roads, were evaluated using digital elevation models (DEMs) and satellite data. The presented GIS data are essential for visualizing and spatially interconnecting SOs; this enables network modeling as a complex system within the Spatial Data Infrastructure (SDI) portfolio of interest. The dataset also includes landslide characteristics from Geoportale Piemonte and the GeoNetwork catalog. Potential applications include resilience analysis, seismic risk assessment, emergency response planning, and post-disaster recovery estimations. Moreover, the dataset helps investigate the interplay between structural vulnerability and geohazards like landslides, heavy rainfall, and earthquakes. Notably, it is particularly relevant for research on urban networks as complex systems, where SDIs assess transportation efficiency and functionality in both pre- and post-event scenarios.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"1614"},"PeriodicalIF":6.9000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12494711/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-05903-y","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We provide geographic information system (GIS) data and a multimodal dataset from a systematic infrastructure vulnerability assessment in the urban road networks of Turin and Naples, Italy. The seismic typologies of the relevant structural objects (SOs), including bridges, buildings, and roads, were evaluated using digital elevation models (DEMs) and satellite data. The presented GIS data are essential for visualizing and spatially interconnecting SOs; this enables network modeling as a complex system within the Spatial Data Infrastructure (SDI) portfolio of interest. The dataset also includes landslide characteristics from Geoportale Piemonte and the GeoNetwork catalog. Potential applications include resilience analysis, seismic risk assessment, emergency response planning, and post-disaster recovery estimations. Moreover, the dataset helps investigate the interplay between structural vulnerability and geohazards like landslides, heavy rainfall, and earthquakes. Notably, it is particularly relevant for research on urban networks as complex systems, where SDIs assess transportation efficiency and functionality in both pre- and post-event scenarios.

城市网络的地震恢复力:基础设施可视化和脆弱性评估数据集。
我们提供了地理信息系统(GIS)数据和来自意大利都灵和那不勒斯城市道路网络系统基础设施脆弱性评估的多模式数据集。使用数字高程模型(dem)和卫星数据评估了相关结构对象(so)的地震类型,包括桥梁、建筑物和道路。所提供的GIS数据对于可视化和空间互连SOs至关重要;这使得网络建模成为空间数据基础设施(SDI)投资组合中的一个复杂系统。该数据集还包括来自皮埃蒙特地质公园和GeoNetwork目录的滑坡特征。潜在的应用包括复原力分析、地震风险评估、应急响应计划和灾后恢复评估。此外,该数据集还有助于调查结构脆弱性与山体滑坡、强降雨和地震等地质灾害之间的相互作用。值得注意的是,它与城市网络作为复杂系统的研究特别相关,其中sdi评估事前和事后情景下的交通效率和功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信