Myeloid Cell Reprogramming and Immune Suppression.

IF 19.1 1区 医学 Q1 PHYSIOLOGY
Amit Grover, Evgenii N Tcyganov, Dmitry I Gabrilovich
{"title":"Myeloid Cell Reprogramming and Immune Suppression.","authors":"Amit Grover, Evgenii N Tcyganov, Dmitry I Gabrilovich","doi":"10.1146/annurev-physiol-050824-111031","DOIUrl":null,"url":null,"abstract":"<p><p>Plasticity of myeloid cells, characterized by their ability to undergo reprogramming in response to environmental cues, is a fundamental feature enabling their versatile functions during immune responses. Macrophages and neutrophils, the primary myeloid cell types, exhibit distinct polarization states. Classical polarization states of macrophages and neutrophils are associated with antimicrobial activity, inflammation promotion, and tissue remodeling. Pathological polarization, observed in chronic inflammation, cancer, and other conditions, is marked by enhanced immune-suppressive activity, aberrant enzymatic activity, and atypical cytokine production, diverging from their classical functions. This review delves into the most up-to-date characterization of those polarization states, the transcriptional and epigenetic factors, and the metabolic pathways governing myeloid cell reprogramming, highlighting the influence of cytokines and tissue-specific conditions, such as hypoxia in tumors, on this process. Understanding the mechanisms underlying the pathological polarization of myeloid cells offers a promising avenue to modulate their activity for targeted therapeutic interventions.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":""},"PeriodicalIF":19.1000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-physiol-050824-111031","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Plasticity of myeloid cells, characterized by their ability to undergo reprogramming in response to environmental cues, is a fundamental feature enabling their versatile functions during immune responses. Macrophages and neutrophils, the primary myeloid cell types, exhibit distinct polarization states. Classical polarization states of macrophages and neutrophils are associated with antimicrobial activity, inflammation promotion, and tissue remodeling. Pathological polarization, observed in chronic inflammation, cancer, and other conditions, is marked by enhanced immune-suppressive activity, aberrant enzymatic activity, and atypical cytokine production, diverging from their classical functions. This review delves into the most up-to-date characterization of those polarization states, the transcriptional and epigenetic factors, and the metabolic pathways governing myeloid cell reprogramming, highlighting the influence of cytokines and tissue-specific conditions, such as hypoxia in tumors, on this process. Understanding the mechanisms underlying the pathological polarization of myeloid cells offers a promising avenue to modulate their activity for targeted therapeutic interventions.

骨髓细胞重编程与免疫抑制。
髓细胞的可塑性,其特点是它们能够响应环境信号进行重编程,是使其在免疫反应中具有多种功能的基本特征。巨噬细胞和中性粒细胞是主要的骨髓细胞类型,表现出明显的极化状态。巨噬细胞和中性粒细胞的经典极化状态与抗菌活性、炎症促进和组织重塑有关。在慢性炎症、癌症和其他疾病中观察到的病理极化,其特征是免疫抑制活性增强、酶活性异常和非典型细胞因子产生,偏离了它们的经典功能。这篇综述深入研究了这些极化状态的最新特征,转录和表观遗传因素,以及控制髓细胞重编程的代谢途径,强调了细胞因子和组织特异性条件(如肿瘤缺氧)对这一过程的影响。了解骨髓细胞病理极化的机制为调节其活性以进行靶向治疗干预提供了一条有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annual review of physiology
Annual review of physiology 医学-生理学
CiteScore
35.60
自引率
0.00%
发文量
41
期刊介绍: Since 1939, the Annual Review of Physiology has been highlighting significant developments in animal physiology. The journal covers diverse areas, including cardiovascular physiology, cell physiology, ecological, evolutionary, and comparative physiology, endocrinology, gastrointestinal physiology, neurophysiology, renal and electrolyte physiology, respiratory physiology, and special topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信