Quantifying endogenous and tracer-derived ketone bodies using a dual-label UHPLC-MS/MS method.

IF 6.1 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Sandra Adámez-Rodríguez, Eric D Queathem, Abdirahman Hayir, María Luisa Marina, María Castro-Puyana, Patrycja Puchalska
{"title":"Quantifying endogenous and tracer-derived ketone bodies using a dual-label UHPLC-MS/MS method.","authors":"Sandra Adámez-Rodríguez, Eric D Queathem, Abdirahman Hayir, María Luisa Marina, María Castro-Puyana, Patrycja Puchalska","doi":"10.1016/j.talanta.2025.128919","DOIUrl":null,"url":null,"abstract":"<p><p>Acetoacetate (AcAc) and β-hydroxybutyrate (βOHB) are ketone bodies involved in energy metabolism, particularly during physiological states of glucose scarcity, such as fasting, exercise, and the implementation of a ketogenic diet. The production (ketogenesis) and utilization (ketolysis) of ketone bodies are dynamic processes that can be quantified using stable isotope-labeled tracers in metabolic tracing studies, necessitating precise and sensitive analytical methods for accurately measuring both labeled and unlabeled pools. Although UHPLC-MS/MS has recently emerged as a reliable tool for quantifying ketone bodies, its dependence on <sup>13</sup>C-labeled internal standards limits its utility in <sup>13</sup>C-based tracer studies. AcAc, in particular, poses challenges due to its chemical instability and the scarcity of authentic, stable, isotopically labeled internal standards. While the chemical reduction of AcAc to βOHB provides a solution, this necessitates a cumbersome desalting step. To overcome these limitations, we developed a novel approach using deuterated AcAc (d<sub>3</sub>-AcAc) and [3,4,4,4-d<sub>4</sub>]βOHB as internal standards for the simultaneous quantification of <sup>13</sup>C-labeled and unlabeled ketone bodies in biological samples. We optimized the synthesis of AcAc from ethyl-AcAc via base-catalyzed hydrolysis, achieving 99.2 ± 0.2 % purity at 60 °C for 3 h, as confirmed by <sup>1</sup>H NMR. Stability assessments in the extraction buffer and post-extraction serum samples confirmed the robustness of newly synthesized d<sub>3</sub>-AcAc for at least 5 h. A comparative analysis against the labor-intensive conventional method demonstrated superior precision, accuracy, and ease of application, enabling high-throughput metabolic and clinical studies. The optimized UHPLC-MS/MS method substantially improves metabolic tracing capabilities, enabling rapid and accurate investigation of ketone body tracing studies across various physiological and pathological conditions.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"298 Pt A","pages":"128919"},"PeriodicalIF":6.1000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2025.128919","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Acetoacetate (AcAc) and β-hydroxybutyrate (βOHB) are ketone bodies involved in energy metabolism, particularly during physiological states of glucose scarcity, such as fasting, exercise, and the implementation of a ketogenic diet. The production (ketogenesis) and utilization (ketolysis) of ketone bodies are dynamic processes that can be quantified using stable isotope-labeled tracers in metabolic tracing studies, necessitating precise and sensitive analytical methods for accurately measuring both labeled and unlabeled pools. Although UHPLC-MS/MS has recently emerged as a reliable tool for quantifying ketone bodies, its dependence on 13C-labeled internal standards limits its utility in 13C-based tracer studies. AcAc, in particular, poses challenges due to its chemical instability and the scarcity of authentic, stable, isotopically labeled internal standards. While the chemical reduction of AcAc to βOHB provides a solution, this necessitates a cumbersome desalting step. To overcome these limitations, we developed a novel approach using deuterated AcAc (d3-AcAc) and [3,4,4,4-d4]βOHB as internal standards for the simultaneous quantification of 13C-labeled and unlabeled ketone bodies in biological samples. We optimized the synthesis of AcAc from ethyl-AcAc via base-catalyzed hydrolysis, achieving 99.2 ± 0.2 % purity at 60 °C for 3 h, as confirmed by 1H NMR. Stability assessments in the extraction buffer and post-extraction serum samples confirmed the robustness of newly synthesized d3-AcAc for at least 5 h. A comparative analysis against the labor-intensive conventional method demonstrated superior precision, accuracy, and ease of application, enabling high-throughput metabolic and clinical studies. The optimized UHPLC-MS/MS method substantially improves metabolic tracing capabilities, enabling rapid and accurate investigation of ketone body tracing studies across various physiological and pathological conditions.

采用双标签UHPLC-MS/MS方法定量内源性和示踪衍生酮体。
乙酰乙酸酯(AcAc)和β-羟基丁酸酯(βOHB)是参与能量代谢的酮体,特别是在葡萄糖缺乏的生理状态下,如禁食、运动和实施生酮饮食。酮体的产生(生酮)和利用(酮解)是一个动态过程,在代谢示踪研究中可以使用稳定的同位素标记示踪剂进行量化,因此需要精确和敏感的分析方法来准确测量标记池和未标记池。虽然UHPLC-MS/MS最近成为一种可靠的酮体定量工具,但其对13c标记的内标的依赖限制了其在13c示踪剂研究中的应用。特别是AcAc,由于其化学不稳定性和缺乏真正的、稳定的、同位素标记的内部标准,带来了挑战。虽然AcAc化学还原为βOHB提供了一种解决方案,但这需要一个繁琐的脱盐步骤。为了克服这些限制,我们开发了一种新的方法,使用氘化AcAc (d3-AcAc)和[3,4,4,4-d4]βOHB作为生物样品中13c标记和未标记酮体的内标同时定量。我们优化了以乙基AcAc为原料,通过碱催化水解合成AcAc,在60°C下水解3 h,纯度达到99.2%±0.2%,经1H NMR证实。提取缓冲液和提取后血清样品的稳定性评估证实了新合成的d3-AcAc的稳健性至少为5小时。与劳动密集型的传统方法的比较分析表明,该方法具有更高的精密度、准确性和易用性,可用于高通量代谢和临床研究。优化后的UHPLC-MS/MS方法大大提高了代谢示踪能力,能够快速准确地研究各种生理和病理条件下的酮体示踪研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Talanta
Talanta 化学-分析化学
CiteScore
12.30
自引率
4.90%
发文量
861
审稿时长
29 days
期刊介绍: Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome. Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信