Mo2C-Mo3N2 Heterojunction Encapsulated Within N-Doped Carbon Cage for Enhanced Selective Hydrogenation of CO2 to CO.

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-10-03 DOI:10.1002/smll.202508722
Pengze Zhang, Chong Yao, Peng Zhang, Qingtao Wang, Xiaonian Li, Mingyuan Zhu
{"title":"Mo<sub>2</sub>C-Mo<sub>3</sub>N<sub>2</sub> Heterojunction Encapsulated Within N-Doped Carbon Cage for Enhanced Selective Hydrogenation of CO<sub>2</sub> to CO.","authors":"Pengze Zhang, Chong Yao, Peng Zhang, Qingtao Wang, Xiaonian Li, Mingyuan Zhu","doi":"10.1002/smll.202508722","DOIUrl":null,"url":null,"abstract":"<p><p>The reverse water gas shift reaction (RWGS) can convert CO<sub>2</sub> into CO, but the low activity and the inexpensive catalysts inhibit the industrialization process. As a potential material for the RWGS reaction, Mo<sub>2</sub>C faces the challenges of high dispersibility and synthesis efficiency. Here, the Mo<sub>3</sub>N<sub>2</sub>-Mo<sub>2</sub>C heterojunction encaged in N-doped carbon matrix is synthesized using in situ carbonization method, which exhibits high activity under mild temperature. The CO<sub>2</sub> conversion is 38.3%, the selectivity of CO is 99.1% upon 410 °C. The Space Time Yield is 17333.6 mgCO g<sub>cat</sub> <sup>-1</sup>h<sup>-1</sup> (619.06 mmol g<sub>cat</sub> <sup>-1</sup> h<sup>-1</sup>) under 450 °C, and WHSV = 240 000 mL g<sub>cat</sub> <sup>-1</sup> h<sup>-1</sup>, which is superior than traditional catalysts such as Cu-Zn-Al and noble metal catalysts. The catalyst shows 99.9% selectivity of CO, and maintaining equilibrium conversion for 200 h under 500 °C. The structure-performance relationship studies indicate the synergistic effect of Mo<sub>2</sub>C-Mo<sub>3</sub>N<sub>2</sub> heterojunction active sites enhances H<sub>2</sub> adsorption and dissociation significantly, which boosting the H assisted CO<sub>2</sub> reduction reaction. Moreover, the N-doped carbon cage confined environment greatly boosts the catalyst stability. This work provides a simple and feasible strategy for the synthesis of highly dispersed Mo<sub>2</sub>C-Mo<sub>3</sub>N<sub>2</sub> heterojunction active site for CO<sub>2</sub> hydrogenation reaction, and a way to boost the H<sub>2</sub> activation capacity of Mo<sub>2</sub>C catalyst.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":" ","pages":"e08722"},"PeriodicalIF":12.1000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202508722","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The reverse water gas shift reaction (RWGS) can convert CO2 into CO, but the low activity and the inexpensive catalysts inhibit the industrialization process. As a potential material for the RWGS reaction, Mo2C faces the challenges of high dispersibility and synthesis efficiency. Here, the Mo3N2-Mo2C heterojunction encaged in N-doped carbon matrix is synthesized using in situ carbonization method, which exhibits high activity under mild temperature. The CO2 conversion is 38.3%, the selectivity of CO is 99.1% upon 410 °C. The Space Time Yield is 17333.6 mgCO gcat -1h-1 (619.06 mmol gcat -1 h-1) under 450 °C, and WHSV = 240 000 mL gcat -1 h-1, which is superior than traditional catalysts such as Cu-Zn-Al and noble metal catalysts. The catalyst shows 99.9% selectivity of CO, and maintaining equilibrium conversion for 200 h under 500 °C. The structure-performance relationship studies indicate the synergistic effect of Mo2C-Mo3N2 heterojunction active sites enhances H2 adsorption and dissociation significantly, which boosting the H assisted CO2 reduction reaction. Moreover, the N-doped carbon cage confined environment greatly boosts the catalyst stability. This work provides a simple and feasible strategy for the synthesis of highly dispersed Mo2C-Mo3N2 heterojunction active site for CO2 hydrogenation reaction, and a way to boost the H2 activation capacity of Mo2C catalyst.

Abstract Image

氮掺杂碳笼内包裹Mo2C-Mo3N2异质结增强CO2选择性加氢制CO
逆水气转换反应(RWGS)可以将CO2转化为CO,但催化剂活性低且价格低廉,阻碍了其工业化进程。作为RWGS反应的潜在材料,Mo2C面临着高分散性和高合成效率的挑战。本文采用原位碳化法制备了氮掺杂碳基体中的Mo3N2-Mo2C异质结,该异质结在温和温度下表现出较高的活性。410℃时CO2转化率为38.3%,CO的选择性为99.1%。在450℃条件下,时空产率为17333.6 mgCO gcat -1h-1 (619.06 mmol gcat -1h-1), WHSV = 240 000 mL gcat -1h-1,优于传统的Cu-Zn-Al催化剂和贵金属催化剂。催化剂对CO的选择性为99.9%,在500℃下可保持200 h的平衡转化。结构-性能关系研究表明,Mo2C-Mo3N2异质结活性位点的协同作用显著增强了H2的吸附和解离,促进了H辅助CO2还原反应。此外,n掺杂碳笼的密闭环境大大提高了催化剂的稳定性。本研究为合成高分散Mo2C- mo3n2异质结活性位点用于CO2加氢反应提供了一种简单可行的策略,并为提高Mo2C催化剂的H2活化能力提供了途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信