{"title":"Comparison of sulfur cyclings coupled with anaerobic ammonium oxidation in response to different river remediations.","authors":"Chenxi Yu, Hongyang Zhu, Yan He, Rui Weng","doi":"10.1016/j.jenvman.2025.127523","DOIUrl":null,"url":null,"abstract":"<p><p>The evolution from 'malodor' to 'algae bloom' in remediated urban rivers has received an ever-increasing attention due to relatively high nitrogen (N) loadings. As pivotal autotrophic processes, anaerobic ammonium oxidation (anammox) and sulfur-driven denitrification (SDD) represent promising candidates for N removal in remediated rivers with low C/N ratios. However, how and to what extent SDD is coupled with anammox remained largely unknown. Our investigations of four remediated urban rivers revealed that SDD was more prevalent than anammox, with Thiobacillus (0.13 %-2.51 %) dominating over Candidatus_Brocadia (0-0.02 %). The injection of Ca(NO<sub>3</sub>)<sub>2</sub> greatly enhanced the coupling of SDD and anammox (SDDA) in anaerobic environments, achieving a maximum total nitrogen (TN) removal of 93.89 %. Metagenomic and metatranscriptomic analyses identified Thiobacillus, Thermomonas, and Candidatus_Brocadia as key microbial players, with their activities increased by 0.060 %, 0.015 %, and 0.498 %, respectively. Differently, Sulfurisoma, Dechloromonas, and Candidatus_Scalindua emerged as key players in Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>-group, while Sulfurisoma, Sulfurimonas, and Candidatus_Scalindua played pivotal roles in FeS<sub>2</sub>-group. Additionally, river simulations revealed that Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>-group showed the strongest SDDA coupling, supported by the highest abundances of soxB (0.14 %), narG (0.05 %), nirS (5.92 %), and hzsB (6.14 %). The FeS<sub>2</sub>-group demonstrated moderate coupling, whereas the Ca(NO<sub>3</sub>)<sub>2</sub>-group displayed the weakest performance. Moreover, Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>-group also exhibited excellent TN removal (87.58 %) in real river scenarios, indicating its potential as one promising N removal strategy for practical application. This study contributes to the understanding of S-N cyclings in river ecosystems and provides insights into manipulating N-reduction for possible application in remediated urban rivers.</p>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"394 ","pages":"127523"},"PeriodicalIF":8.4000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jenvman.2025.127523","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The evolution from 'malodor' to 'algae bloom' in remediated urban rivers has received an ever-increasing attention due to relatively high nitrogen (N) loadings. As pivotal autotrophic processes, anaerobic ammonium oxidation (anammox) and sulfur-driven denitrification (SDD) represent promising candidates for N removal in remediated rivers with low C/N ratios. However, how and to what extent SDD is coupled with anammox remained largely unknown. Our investigations of four remediated urban rivers revealed that SDD was more prevalent than anammox, with Thiobacillus (0.13 %-2.51 %) dominating over Candidatus_Brocadia (0-0.02 %). The injection of Ca(NO3)2 greatly enhanced the coupling of SDD and anammox (SDDA) in anaerobic environments, achieving a maximum total nitrogen (TN) removal of 93.89 %. Metagenomic and metatranscriptomic analyses identified Thiobacillus, Thermomonas, and Candidatus_Brocadia as key microbial players, with their activities increased by 0.060 %, 0.015 %, and 0.498 %, respectively. Differently, Sulfurisoma, Dechloromonas, and Candidatus_Scalindua emerged as key players in Na2S2O3-group, while Sulfurisoma, Sulfurimonas, and Candidatus_Scalindua played pivotal roles in FeS2-group. Additionally, river simulations revealed that Na2S2O3-group showed the strongest SDDA coupling, supported by the highest abundances of soxB (0.14 %), narG (0.05 %), nirS (5.92 %), and hzsB (6.14 %). The FeS2-group demonstrated moderate coupling, whereas the Ca(NO3)2-group displayed the weakest performance. Moreover, Na2S2O3-group also exhibited excellent TN removal (87.58 %) in real river scenarios, indicating its potential as one promising N removal strategy for practical application. This study contributes to the understanding of S-N cyclings in river ecosystems and provides insights into manipulating N-reduction for possible application in remediated urban rivers.
期刊介绍:
The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.