Multi GPU Sparse Matrix by Sparse Matrix Multiplication

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Artem Mavliutov, Giovanni Isotton, Carlo Janna, Alessandro Celestini, Massimo Bernaschi
{"title":"Multi GPU Sparse Matrix by Sparse Matrix Multiplication","authors":"Artem Mavliutov,&nbsp;Giovanni Isotton,&nbsp;Carlo Janna,&nbsp;Alessandro Celestini,&nbsp;Massimo Bernaschi","doi":"10.1002/cpe.70313","DOIUrl":null,"url":null,"abstract":"<p>The paper focuses on the improvement of the existing <i>nsparse</i> Nagasaka et al. algorithm and its extension to the multi-GPU setting for the application of real engineering problems. In this work, we propose a distributed multi-GPU framework for <i>SpGEMM</i> that is designed specifically for the <i>nsparse</i> like algorithms. The results show ∼2 times speed-up for <i>nsparse</i> and close to ideal scalability of the multi-GPU extension with the number of GPUs. Finally, we test the proposed algorithm in the AMG setting by computing the double <i>SpGEMM</i> product.</p>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"37 25-26","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpe.70313","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.70313","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The paper focuses on the improvement of the existing nsparse Nagasaka et al. algorithm and its extension to the multi-GPU setting for the application of real engineering problems. In this work, we propose a distributed multi-GPU framework for SpGEMM that is designed specifically for the nsparse like algorithms. The results show ∼2 times speed-up for nsparse and close to ideal scalability of the multi-GPU extension with the number of GPUs. Finally, we test the proposed algorithm in the AMG setting by computing the double SpGEMM product.

Abstract Image

多GPU稀疏矩阵的稀疏矩阵乘法
本文重点对现有的nsparse Nagasaka等算法进行改进,并将其扩展到多gpu设置,以便于实际工程问题的应用。在这项工作中,我们为SpGEMM提出了一个分布式多gpu框架,该框架是专门为n稀疏算法设计的。结果表明,nsparse的速度提高了2倍,并且随着gpu数量的增加,多gpu扩展接近理想的可扩展性。最后,我们通过计算双SpGEMM积来验证该算法在AMG设置下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Concurrency and Computation-Practice & Experience
Concurrency and Computation-Practice & Experience 工程技术-计算机:理论方法
CiteScore
5.00
自引率
10.00%
发文量
664
审稿时长
9.6 months
期刊介绍: Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of: Parallel and distributed computing; High-performance computing; Computational and data science; Artificial intelligence and machine learning; Big data applications, algorithms, and systems; Network science; Ontologies and semantics; Security and privacy; Cloud/edge/fog computing; Green computing; and Quantum computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信