Constraints on the Dehydration Systematics of Subducted Oceanic Crust Across the Blueschist-to-Eclogite Facies Transition (Eclogite Zone, Eastern Alps)
{"title":"Constraints on the Dehydration Systematics of Subducted Oceanic Crust Across the Blueschist-to-Eclogite Facies Transition (Eclogite Zone, Eastern Alps)","authors":"L. A. Strobl, D. Elsworth, D. Fisher, A. J. Smye","doi":"10.1029/2025GC012280","DOIUrl":null,"url":null,"abstract":"<p>Mafic eclogites of the Tauern Window in the Eastern Alps preserve vein networks associated with eclogite-facies mineral assemblages. The structural and mineralogical diversity of these veins is encapsulated by Type I veins, which resemble deformed tension gashes, and Type II quartz segregates with non-planar morphologies. Within host eclogites, garnet growth occurred along a prograde <i>P</i>-<i>T</i> path between 2.05 ± 0.10 GPa, 580 ± 15°C and 2.50 ± 0.10 GPa, 630 ± 15°C, consistent with conditions on the slab-wedge interface of modern subduction zones. The dehydration of lawsonite and Na-amphibole released ∼5 wt.% H<sub>2</sub>O over 20–35°C, creating ∼11% transient porosity. In situ oxygen isotope analysis of quartz-rutile pairs constrains formation temperatures to between 460°C and 610°C for Type I and II vein structures. Individual veins preserve records of protracted crystallization over ∼100°C, suggesting that fluids remained undrained in the oceanic crust for 10<sup>5</sup>–10<sup>6</sup> years during subduction to ∼90 km. A simple petrological-mechanical model for the blueschist-to-eclogite transition shows that under extremely low permeability (10<sup>−22</sup> to 10<sup>−34</sup> m<sup>2</sup>), Type I veins may form by tensile failure during periods of high pore fluid pressure, whereas Type II quartz segregates represent accumulations of derived fluids during periods of lower fluid pressure. These findings imply that domains of oceanic crust with extreme low permeability may retain fluids released during the blueschist-to-eclogite past the depths of arc magma genesis.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"26 10","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025GC012280","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025GC012280","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Mafic eclogites of the Tauern Window in the Eastern Alps preserve vein networks associated with eclogite-facies mineral assemblages. The structural and mineralogical diversity of these veins is encapsulated by Type I veins, which resemble deformed tension gashes, and Type II quartz segregates with non-planar morphologies. Within host eclogites, garnet growth occurred along a prograde P-T path between 2.05 ± 0.10 GPa, 580 ± 15°C and 2.50 ± 0.10 GPa, 630 ± 15°C, consistent with conditions on the slab-wedge interface of modern subduction zones. The dehydration of lawsonite and Na-amphibole released ∼5 wt.% H2O over 20–35°C, creating ∼11% transient porosity. In situ oxygen isotope analysis of quartz-rutile pairs constrains formation temperatures to between 460°C and 610°C for Type I and II vein structures. Individual veins preserve records of protracted crystallization over ∼100°C, suggesting that fluids remained undrained in the oceanic crust for 105–106 years during subduction to ∼90 km. A simple petrological-mechanical model for the blueschist-to-eclogite transition shows that under extremely low permeability (10−22 to 10−34 m2), Type I veins may form by tensile failure during periods of high pore fluid pressure, whereas Type II quartz segregates represent accumulations of derived fluids during periods of lower fluid pressure. These findings imply that domains of oceanic crust with extreme low permeability may retain fluids released during the blueschist-to-eclogite past the depths of arc magma genesis.
期刊介绍:
Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged.
Areas of interest for this peer-reviewed journal include, but are not limited to:
The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution
Principles and applications of geochemical proxies to studies of Earth history
The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them
The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales
Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets
The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets
Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.