Antoniette Greta Grima, Carolina Lithgow-Bertelloni, Fabio Crameri
{"title":"The Role of the Overriding Plate and Mantle Viscosity Structure on Deep Slab Morphology","authors":"Antoniette Greta Grima, Carolina Lithgow-Bertelloni, Fabio Crameri","doi":"10.1029/2025GC012593","DOIUrl":null,"url":null,"abstract":"<p>Using 2D numerical subduction models, we compare the morphology of deep slabs in the presence of an oceanic or continental overriding plate and viscosity jumps at either 660 km or 1,000 km depth as suggested by the latest geoid inversions. We demonstrate that a continental plate, combined with a 1,000 km depth viscosity increase, promotes slab penetration into the lower mantle. The same slab will deflect at 660 km depth if it subducts under an oceanic plate into a mantle where the viscosity increases at 660 km depth. To quantify these dynamics, we introduce a slab-bending ratio, dividing the angle of the deepest tip of the slab (slab tip angle) by its dip angle below the plate interface (shallow slab angle), reflecting the overall steepness, and sinking history of the slab. Ocean-ocean convergence models with a viscosity increase coincident with the phase transition at 660 km depth have low ratios and flattened slabs comparable to ocean-ocean cases in nature (e.g., Izu-Bonin). Coupling a continental overriding plate with a 1,000 km depth viscosity increase separate from the endothermic phase change results in slabs with high ratio values, and stepped morphologies similar to those observed for the Nazca plate beneath Southern Peru. Our results highlight that slab morphologies ultimately express the interaction between the type of overriding plate, slab-induced flow, and phase transitions, modulated by the viscosity structure of the top of the lower mantle and transition zone, complementing studies of slab folding, buckling, and other deformation in the upper mantle.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"26 10","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025GC012593","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025GC012593","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Using 2D numerical subduction models, we compare the morphology of deep slabs in the presence of an oceanic or continental overriding plate and viscosity jumps at either 660 km or 1,000 km depth as suggested by the latest geoid inversions. We demonstrate that a continental plate, combined with a 1,000 km depth viscosity increase, promotes slab penetration into the lower mantle. The same slab will deflect at 660 km depth if it subducts under an oceanic plate into a mantle where the viscosity increases at 660 km depth. To quantify these dynamics, we introduce a slab-bending ratio, dividing the angle of the deepest tip of the slab (slab tip angle) by its dip angle below the plate interface (shallow slab angle), reflecting the overall steepness, and sinking history of the slab. Ocean-ocean convergence models with a viscosity increase coincident with the phase transition at 660 km depth have low ratios and flattened slabs comparable to ocean-ocean cases in nature (e.g., Izu-Bonin). Coupling a continental overriding plate with a 1,000 km depth viscosity increase separate from the endothermic phase change results in slabs with high ratio values, and stepped morphologies similar to those observed for the Nazca plate beneath Southern Peru. Our results highlight that slab morphologies ultimately express the interaction between the type of overriding plate, slab-induced flow, and phase transitions, modulated by the viscosity structure of the top of the lower mantle and transition zone, complementing studies of slab folding, buckling, and other deformation in the upper mantle.
期刊介绍:
Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged.
Areas of interest for this peer-reviewed journal include, but are not limited to:
The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution
Principles and applications of geochemical proxies to studies of Earth history
The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them
The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales
Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets
The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets
Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.