Synergistic Enhancements of Niobium Metal–Organic Framework/V2CTx Composites with Graphene Quantum Dots for Energy Storage and Hydrogen Evolution

IF 3.6 4区 工程技术 Q3 ENERGY & FUELS
Summaira Khan, Ehtisham Umar, Muhammad Ashraf, Muhammad Arslan Sunny, M. Waqas Iqbal, Soumaya Gouadria, Abhinav Kumar, Nagappan Beemkumar, Akbar Mohammad
{"title":"Synergistic Enhancements of Niobium Metal–Organic Framework/V2CTx Composites with Graphene Quantum Dots for Energy Storage and Hydrogen Evolution","authors":"Summaira Khan,&nbsp;Ehtisham Umar,&nbsp;Muhammad Ashraf,&nbsp;Muhammad Arslan Sunny,&nbsp;M. Waqas Iqbal,&nbsp;Soumaya Gouadria,&nbsp;Abhinav Kumar,&nbsp;Nagappan Beemkumar,&nbsp;Akbar Mohammad","doi":"10.1002/ente.202402278","DOIUrl":null,"url":null,"abstract":"<p>MXenes have gained increasing attention due to their unique advantages, including exceptional electrical conductivity, tunable layer structures, and controllable interfacial chemistry. This study addresses these limitations by incorporating niobium metal–organic frameworks (Nb-MOF) onto vanadium carbide MXene (V<sub>2</sub>CT<sub><i>x</i></sub>) surfaces, enhancing energy storage and electrochemical water-splitting performance. Additionally, graphene quantum dots (GQDs) serve as dopants, significantly increasing the specific surface area and charge storage capacity. The optimized Nb-MOF/V<sub>2</sub>CT<sub><i>x</i></sub>@GQDs heterostructure exhibits a low hydrogen evolution reaction (HER) overpotential of 90.54 mV at 10 mA cm<sup>−2</sup>, with a Tafel slope of 103.45 mV dec<sup>−1</sup>, indicating enhanced charge transfer kinetics. For energy storage applications, the asymmetric Nb-MOF/V<sub>2</sub>CT<sub><i>x</i></sub>@GQDs//AC device achieves a high specific capacity of 320 C g<sup>−1</sup> at 2.0 A g<sup>−1</sup>, an energy density (<i>E</i><sub>d</sub>) of 59 Wh kg<sup>−1</sup>, and a power density (<i>P</i><sub>d</sub>) of 1800 W kg<sup>−1</sup>, while maintaining 81.2% capacity retention and 87.5% Coulombic efficiency after 12 000 cycles. These findings demonstrate the synergistic effect of Nb-MOF and V<sub>2</sub>CT<sub><i>x</i></sub>, further enhanced by GQDs, establishing the composite as a promising material for next-generation energy storage and HER.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 10","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202402278","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

MXenes have gained increasing attention due to their unique advantages, including exceptional electrical conductivity, tunable layer structures, and controllable interfacial chemistry. This study addresses these limitations by incorporating niobium metal–organic frameworks (Nb-MOF) onto vanadium carbide MXene (V2CTx) surfaces, enhancing energy storage and electrochemical water-splitting performance. Additionally, graphene quantum dots (GQDs) serve as dopants, significantly increasing the specific surface area and charge storage capacity. The optimized Nb-MOF/V2CTx@GQDs heterostructure exhibits a low hydrogen evolution reaction (HER) overpotential of 90.54 mV at 10 mA cm−2, with a Tafel slope of 103.45 mV dec−1, indicating enhanced charge transfer kinetics. For energy storage applications, the asymmetric Nb-MOF/V2CTx@GQDs//AC device achieves a high specific capacity of 320 C g−1 at 2.0 A g−1, an energy density (Ed) of 59 Wh kg−1, and a power density (Pd) of 1800 W kg−1, while maintaining 81.2% capacity retention and 87.5% Coulombic efficiency after 12 000 cycles. These findings demonstrate the synergistic effect of Nb-MOF and V2CTx, further enhanced by GQDs, establishing the composite as a promising material for next-generation energy storage and HER.

Abstract Image

石墨烯量子点协同增强铌金属-有机骨架/V2CTx复合材料的储能和析氢性能
由于其独特的优势,包括卓越的导电性、可调的层结构和可控制的界面化学,MXenes越来越受到关注。该研究通过将铌金属有机框架(Nb-MOF)结合到碳化钒MXene (V2CTx)表面来解决这些限制,增强了能量储存和电化学水分解性能。此外,石墨烯量子点(GQDs)作为掺杂剂,显著增加了比表面积和电荷存储容量。优化后的Nb-MOF/V2CTx@GQDs异质结构在10 mA cm−2下的析氢反应(HER)过电位为90.54 mV, Tafel斜率为103.45 mV dec−1,表明电荷转移动力学增强。在储能应用方面,非对称Nb-MOF/V2CTx@GQDs//交流器件在2.0 ag−1时具有320 C g−1的高比容量,能量密度(Ed)为59 Wh kg−1,功率密度(Pd)为1800 W kg−1,在12 000次循环后保持81.2%的容量保持率和87.5%的库仑效率。这些发现证明了Nb-MOF和V2CTx的协同效应,并通过GQDs进一步增强,使该复合材料成为下一代储能和she的有前景的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy technology
Energy technology ENERGY & FUELS-
CiteScore
7.00
自引率
5.30%
发文量
0
审稿时长
1.3 months
期刊介绍: Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy. This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g., new concepts of energy generation and conversion; design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers; improvement of existing processes; combination of single components to systems for energy generation; design of systems for energy storage; production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels; concepts and design of devices for energy distribution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信