NH2–SiO2@Ti3C2Tx Core–Shell Nanostructures as Anode Materials for Li-Ion Batteries

IF 3.6 4区 工程技术 Q3 ENERGY & FUELS
Ming Yan, Haoyu Chen, Yu Zhu, Yuxiao Deng, Zhuanlong Yan, Ziyi Lu, Yanlin Chen
{"title":"NH2–SiO2@Ti3C2Tx Core–Shell Nanostructures as Anode Materials for Li-Ion Batteries","authors":"Ming Yan,&nbsp;Haoyu Chen,&nbsp;Yu Zhu,&nbsp;Yuxiao Deng,&nbsp;Zhuanlong Yan,&nbsp;Ziyi Lu,&nbsp;Yanlin Chen","doi":"10.1002/ente.202402417","DOIUrl":null,"url":null,"abstract":"<p>In this study, NH<sub>2</sub>–SiO<sub>2</sub>@Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> core–shell microspheres with different Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> contents are prepared by coating Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> nanosheets on the surfaces of SiO<sub>2</sub> microspheres using an electrostatic self-assembly method. The structures, elemental compositions, and microscopic morphologies of NH<sub>2</sub>–SiO<sub>2</sub>@Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> microspheres are investigated by X-Ray diffraction, Fourier-transform infrared spectroscopy, field-emission scanning electron microscopy, and X-Ray photoelectron spectroscopy. The results show that Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> nanosheets are uniformly coated on the surfaces of the SiO<sub>2</sub> microspheres, and the surfaces of the SiO<sub>2</sub> microspheres are modified by <span></span>NH<sub>2</sub>. The maximum specific surface area of NH<sub>2</sub>–SiO<sub>2</sub>@Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> composite doped with 15 wt% Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> is 29.937 m<sup>2</sup> g<sup>−1</sup>, with an average pore size of 0.11848 cm<sup>3</sup> g<sup>−1</sup>. The electrochemical performance test results show that after 100 cycles at a C rate of 0.2C, the specific capacity of the NH<sub>2</sub>–SiO<sub>2</sub>@Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> anode material increases by 270.1% compared to that of SiO<sub>2</sub>, reaching 142.5 mAh g<sup>−1</sup>. Compared with SiO<sub>2</sub>, the NH<sub>2</sub>–SiO<sub>2</sub>@Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> materials have higher electrical conductivities and Li ion diffusion rates, thereby improving their rate performances, and the discharge specific capacities and cycling stability are superior to those of the SiO<sub>2</sub> anode material.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 10","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202402417","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, NH2–SiO2@Ti3C2Tx core–shell microspheres with different Ti3C2Tx contents are prepared by coating Ti3C2Tx nanosheets on the surfaces of SiO2 microspheres using an electrostatic self-assembly method. The structures, elemental compositions, and microscopic morphologies of NH2–SiO2@Ti3C2Tx microspheres are investigated by X-Ray diffraction, Fourier-transform infrared spectroscopy, field-emission scanning electron microscopy, and X-Ray photoelectron spectroscopy. The results show that Ti3C2Tx nanosheets are uniformly coated on the surfaces of the SiO2 microspheres, and the surfaces of the SiO2 microspheres are modified by NH2. The maximum specific surface area of NH2–SiO2@Ti3C2Tx composite doped with 15 wt% Ti3C2Tx is 29.937 m2 g−1, with an average pore size of 0.11848 cm3 g−1. The electrochemical performance test results show that after 100 cycles at a C rate of 0.2C, the specific capacity of the NH2–SiO2@Ti3C2Tx anode material increases by 270.1% compared to that of SiO2, reaching 142.5 mAh g−1. Compared with SiO2, the NH2–SiO2@Ti3C2Tx materials have higher electrical conductivities and Li ion diffusion rates, thereby improving their rate performances, and the discharge specific capacities and cycling stability are superior to those of the SiO2 anode material.

Abstract Image

NH2 - SiO2@Ti3C2Tx核壳纳米结构作为锂离子电池负极材料
本研究采用静电自组装的方法,在SiO2微球表面涂覆Ti3C2Tx纳米片,制备了不同Ti3C2Tx含量的NH2 - SiO2@Ti3C2Tx核壳微球。利用x射线衍射、傅里叶变换红外光谱、场发射扫描电镜和x射线光电子能谱研究了NH2 - SiO2@Ti3C2Tx微球的结构、元素组成和微观形貌。结果表明:Ti3C2Tx纳米片被均匀地包覆在SiO2微球表面,且SiO2微球表面经过了改性。掺15wt % Ti3C2Tx的NH2 - SiO2@Ti3C2Tx复合材料的最大比表面积为29.937 m2 g−1,平均孔径为0.11848 cm3 g−1。电化学性能测试结果表明,在0.2C的C倍率下循环100次后,NH2 - SiO2@Ti3C2Tx负极材料的比容量比SiO2提高了270.1%,达到142.5 mAh g−1。与SiO2相比,NH2 - SiO2@Ti3C2Tx材料具有更高的电导率和Li离子扩散速率,从而提高了负极材料的倍率性能,且放电比容量和循环稳定性优于SiO2负极材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy technology
Energy technology ENERGY & FUELS-
CiteScore
7.00
自引率
5.30%
发文量
0
审稿时长
1.3 months
期刊介绍: Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy. This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g., new concepts of energy generation and conversion; design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers; improvement of existing processes; combination of single components to systems for energy generation; design of systems for energy storage; production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels; concepts and design of devices for energy distribution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信