Limited Headwater CO2 Emissions Relative to Downstream C Fluxes: Insights From a Tracer-Enabled Reactive Transport Model

IF 3.5 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
William J. Larsen, Mark A. Torres, Evan J. Ramos, Sebastian Muñoz, Yi Hou, Tao Sun, Daniel E. Ibarra, Miriam Gammerman, Jonah Bernstein-Schalet, Kly D. Suquino, Preston Cosslett Kemeny
{"title":"Limited Headwater CO2 Emissions Relative to Downstream C Fluxes: Insights From a Tracer-Enabled Reactive Transport Model","authors":"William J. Larsen,&nbsp;Mark A. Torres,&nbsp;Evan J. Ramos,&nbsp;Sebastian Muñoz,&nbsp;Yi Hou,&nbsp;Tao Sun,&nbsp;Daniel E. Ibarra,&nbsp;Miriam Gammerman,&nbsp;Jonah Bernstein-Schalet,&nbsp;Kly D. Suquino,&nbsp;Preston Cosslett Kemeny","doi":"10.1029/2024JG008592","DOIUrl":null,"url":null,"abstract":"<p>Some fraction of the total carbon (C) transported by rivers can enter the atmosphere as CO<sub>2</sub> via gas evasion as water transits from source to sink. Quantifying this evaded portion can be challenging due to the need to constrain chemical and physical parameters along an entire stream network using a limited number of point measurements. To address this challenge, we employed an tracer-enabled (<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>δ</mi>\n <mn>13</mn>\n </msup>\n </mrow>\n <annotation> ${\\delta }^{13}$</annotation>\n </semantics></math>C and <sup>222</sup>Rn) reactive transport model to simulate CO<sub>2</sub> evasion along an entire stream network in the Little Deschutes River in the Eastern Cascades, Oregon, USA. We sampled the river network in distinct lanscape regimes and measured potential C sources including soil gas, groundwater springs, and wetland waters. Using these data, we first evaluated the reactive transport model using empirical gas transfer scaling relationships and measured groundwater chemistry. We then employed a Monte-Carlo optimization using riverine observations of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>pCO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{pCO}}_{2}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>δ</mi>\n <mn>13</mn>\n </msup>\n </mrow>\n <annotation> ${\\delta }^{13}$</annotation>\n </semantics></math>C and <sup>222</sup>Rn, which yielded more accurate estimates of CO<sub>2</sub> evasion by improving estimates of spatially-averaged groundwater pCO<sub>2</sub> and generating a site-specific gas transfer scaling relationship. Our results demonstrate that riparian wetlands contribute to 19% of the computed CO<sub>2</sub> evasion flux. Lastly, we find that CO<sub>2</sub> evasion only accounts for 12% of the total riverine C flux, with the remaining fraction contributed by advective flux of DIC (50%) and DOC (38%) through the watershed outlet.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 10","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024JG008592","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Some fraction of the total carbon (C) transported by rivers can enter the atmosphere as CO2 via gas evasion as water transits from source to sink. Quantifying this evaded portion can be challenging due to the need to constrain chemical and physical parameters along an entire stream network using a limited number of point measurements. To address this challenge, we employed an tracer-enabled ( δ 13 ${\delta }^{13}$ C and 222Rn) reactive transport model to simulate CO2 evasion along an entire stream network in the Little Deschutes River in the Eastern Cascades, Oregon, USA. We sampled the river network in distinct lanscape regimes and measured potential C sources including soil gas, groundwater springs, and wetland waters. Using these data, we first evaluated the reactive transport model using empirical gas transfer scaling relationships and measured groundwater chemistry. We then employed a Monte-Carlo optimization using riverine observations of pCO 2 ${\text{pCO}}_{2}$ , δ 13 ${\delta }^{13}$ C and 222Rn, which yielded more accurate estimates of CO2 evasion by improving estimates of spatially-averaged groundwater pCO2 and generating a site-specific gas transfer scaling relationship. Our results demonstrate that riparian wetlands contribute to 19% of the computed CO2 evasion flux. Lastly, we find that CO2 evasion only accounts for 12% of the total riverine C flux, with the remaining fraction contributed by advective flux of DIC (50%) and DOC (38%) through the watershed outlet.

Abstract Image

有限的水源二氧化碳排放相对于下游碳通量:从示踪剂激活反应输运模型的见解
河流输送的总碳(C)中有一部分会在水从源头到汇的过程中通过气体逃逸而以二氧化碳的形式进入大气。由于需要使用有限数量的点测量来限制整个流网络的化学和物理参数,因此对该回避部分进行量化是具有挑战性的。为了应对这一挑战,研究人员采用了一种示踪剂(δ 13 ${\delta}^{13}$ C和222Rn)反应输移模型,模拟了美国俄勒冈州东部Cascades小德舒特河整个水系的二氧化碳逃逸。我们在不同的景观条件下对河网进行了采样,并测量了潜在的碳源,包括土壤气体、地下水泉和湿地水。利用这些数据,我们首先利用经验气体传输结垢关系和测量的地下水化学来评估反应输运模型。然后,我们使用蒙特卡罗优化,利用河流观测值pCO 2 ${\text{pCO}}_{2}$, δ 13 ${\delta}^{13}$ C和222Rn,通过改进地下水二氧化碳分压的空间平均估计值,并产生特定地点的气体转移标度关系,得出了更准确的二氧化碳逃逸估计。我们的研究结果表明,河岸湿地贡献了19%的CO2逃逸通量。最后,我们发现CO2逃逸仅占总河流C通量的12%,其余部分由通过流域出口的DIC(50%)和DOC(38%)的平流通量贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Biogeosciences
Journal of Geophysical Research: Biogeosciences Earth and Planetary Sciences-Paleontology
CiteScore
6.60
自引率
5.40%
发文量
242
期刊介绍: JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信