A Proof-of-Concept Membrane Module Concept for Solar Thermal Water Splitting Using Oxygen Transport Membranes

IF 3.6 4区 工程技术 Q3 ENERGY & FUELS
Christopher Hall, Falk Schulze-Küppers, Kai Bittner, Bernd Büddefeld, Nikolaos Margaritis, Jörg Wolters, Sonja Groß-Barsnick, Juan Pablo Rincon Duarte, Nicole Carina Neumann, Ghaleb Natour
{"title":"A Proof-of-Concept Membrane Module Concept for Solar Thermal Water Splitting Using Oxygen Transport Membranes","authors":"Christopher Hall,&nbsp;Falk Schulze-Küppers,&nbsp;Kai Bittner,&nbsp;Bernd Büddefeld,&nbsp;Nikolaos Margaritis,&nbsp;Jörg Wolters,&nbsp;Sonja Groß-Barsnick,&nbsp;Juan Pablo Rincon Duarte,&nbsp;Nicole Carina Neumann,&nbsp;Ghaleb Natour","doi":"10.1002/ente.202402191","DOIUrl":null,"url":null,"abstract":"<p>Solar thermal water splitting using oxygen transport membranes enables sustainable hydrogen production and can thus play a key role in the emerging hydrogen economy. Membrane reactors potentially reduce temperature required by shifting the concentration equilibrium, thereby increasing the efficiency of thermal water splitting. This work presents a scaled-up proof-of-concept (PoC) module design for solar thermal water splitting applications utilizing oxygen transport membranes in relevant environments. The PoC module is based on a flexible and scalable stack design with parallel-oriented, membrane-containing layers, which supports the scalability of the concept. Solar heat integration is optimized for direct irradiation by a High Flux Solar Simulator. Key outcomes include focal point adjustments and design modifications using an irradiated copper plate to mitigate hot spots. The PoC module's material concept prevents thermal stresses and ensures gas-tight sealing of the membranes at an operating temperature of 850 °C under reducing and corrosive atmospheres. Optimal flow rates for steam (30–213 mmol min<sup>−1</sup>) and methane (8–54 mmol min<sup>−1</sup>) are calculated for the PoC module, resulting in efficient hydrogen (7–51 mmol min<sup>−1</sup>) and syngas (22–156 mmol min<sup>−1</sup>) production, using a membrane area of 167 cm<sup>2</sup>, with H<sub>2</sub>O and CH<sub>4</sub> conversion rates of 25% and 95%, respectively.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 10","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ente.202402191","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202402191","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Solar thermal water splitting using oxygen transport membranes enables sustainable hydrogen production and can thus play a key role in the emerging hydrogen economy. Membrane reactors potentially reduce temperature required by shifting the concentration equilibrium, thereby increasing the efficiency of thermal water splitting. This work presents a scaled-up proof-of-concept (PoC) module design for solar thermal water splitting applications utilizing oxygen transport membranes in relevant environments. The PoC module is based on a flexible and scalable stack design with parallel-oriented, membrane-containing layers, which supports the scalability of the concept. Solar heat integration is optimized for direct irradiation by a High Flux Solar Simulator. Key outcomes include focal point adjustments and design modifications using an irradiated copper plate to mitigate hot spots. The PoC module's material concept prevents thermal stresses and ensures gas-tight sealing of the membranes at an operating temperature of 850 °C under reducing and corrosive atmospheres. Optimal flow rates for steam (30–213 mmol min−1) and methane (8–54 mmol min−1) are calculated for the PoC module, resulting in efficient hydrogen (7–51 mmol min−1) and syngas (22–156 mmol min−1) production, using a membrane area of 167 cm2, with H2O and CH4 conversion rates of 25% and 95%, respectively.

Abstract Image

利用氧气传输膜进行太阳能热水分解的膜组件概念验证
利用氧气传输膜进行太阳能热水分解,可以实现可持续的氢气生产,因此可以在新兴的氢经济中发挥关键作用。膜反应器有可能通过改变浓度平衡来降低所需的温度,从而提高热水分解的效率。这项工作提出了一个大规模的概念验证(PoC)模块设计,用于在相关环境中利用氧气传输膜的太阳能热水分解应用。PoC模块基于灵活且可扩展的堆栈设计,具有面向并行的膜层,支持概念的可扩展性。利用高通量太阳模拟器对太阳热集成进行了优化。主要成果包括焦点调整和设计修改,使用辐照铜板来减轻热点。PoC模块的材料概念可以防止热应力,并确保膜在850°C的工作温度下在还原性和腐蚀性气氛下的气密性。PoC模块计算了蒸汽(30-213 mmol min - 1)和甲烷(8-54 mmol min - 1)的最佳流量,使用167 cm2的膜面积,产生有效的氢气(7-51 mmol min - 1)和合成气(22-156 mmol min - 1),水和甲烷的转化率分别为25%和95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy technology
Energy technology ENERGY & FUELS-
CiteScore
7.00
自引率
5.30%
发文量
0
审稿时长
1.3 months
期刊介绍: Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy. This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g., new concepts of energy generation and conversion; design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers; improvement of existing processes; combination of single components to systems for energy generation; design of systems for energy storage; production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels; concepts and design of devices for energy distribution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信